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Abstract— Despite their success in LIDAR object detection,
modern detectors are vulnerable to uncommon instances and
corner cases (e.g., a runaway tire) since they are closed-set
and static. Networks under the closed-set setup only predict
labels of seen classes, while static models suffer from catas-
trophic forgetting when gradually learning novel concepts. This
motivates us to formulate the open-world 3D object detection
task for autonomous driving, which aims to 1) tackle the
closed-set issue by identifying unseen instances as unknown
and 2) incrementally learn novel classes without forgetting
previously obtained knowledge. To achieve the open-world
objectives, we propose Open-World 3D Detector (OW3Det),
the first framework for open-world 3D object detection. The
OW3Det comprises a base detector, a self-supervised unknown
identifier, and a knowledge-distillation-restricted incremental
learner. Although knowledge distillation facilitates preserving
memories, imposing penalties on areas containing unknown
objects hinders the incremental learning process. We mit-
igate this hindrance by employing unknown-driven pivotal
mask, which eliminates unnecessary restrictions on regions
overlapping with novel instances. Abundant experiments and
visualizations demonstrate that the proposed OW3Det attains
state-of-the-art performance.

I. INTRODUCTION

A reliable 3D detector is essential for the perception
system of autonomous vehicles. Recent advancements [1],
[2], [3], [4] in LIDAR point cloud detection methods have
made significant strides on benchmarks such as KITTI [5]
and nuScenes [6]. Despite this progress, real-world driving
scenarios still present challenges due to the presence of
unknown (unlabeled) classes. These unknown instances pose
a safety risk as most conventional 3D detectors are closed-set
and static. Figure1 illustrates a comparison of the ground-
truth and detection results of several settings. The closed-
set setup makes models detect all objects as categories
encountered during training, assigning unseen instances with
the labels of seen classes. Meanwhile, the static paradigm
restricts detectors to limited driving scenes, as finetuning a
static model to new classes carries the risk of forgetting the
initially learned classes.

To address this issue, [7] formalize open-world recognition
by updating the image classifier to recognize new classes.
[8] extend the concept of open-world recognition to object
detection. They utilize contrastive clustering to enhance
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Fig. 1. Models under the closed-set setup fail to detect unknown objects
(highlighted by the purple dotted rectangles) or assign unseen instances
with the labels of old classes (highlighted by the blue dotted rectangles).
Directly finetuning to novel classes leads to the forgetting of the initially
learned tasks (highlighted by the red dotted rectangles). In contrast, the
open-world model is capable of identifying unseen objects as unknown and
incrementally learning these unseen classes.

the energy-based unknown identifier. To prevent forgetting
previously learned information, they employ example replay
during incremental learning. Whereas these methods take a
step further, significant differences exist between 2D and 3D
tasks, making open-world 3D object detection not yet fully
explored. Existing methods such as the examplar replay and
knowledge distillation imposing penalties on areas contain-
ing unknown objects, thus hindering the learning process of
open-world 3D object detection. These methods have yet to
fully leverage the potential of combining open-set detection
and incremental learning. Despite being unfamiliar, humans
can easily identify unseen objects as individual instances
and incrementally learn novel concepts. It is our innate
curiosity about the unknown that fuels the desire to learn new
concepts. Unknown instances can provide valuable insights
for more accurate incremental learning, as the novel classes
incorporated by the incremental learner are a subset of the
unknown classes.

To bridge the aforementioned gap, we formulate the open-
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world 3D object detection task for autonomous driving,
which is composed of the open-set detection task and the
incremental learning task. As shown in Figure1, the open-
world model is capable of identifying unseen objects as
unknown and incrementally learning these unseen classes.
To achieve the open-world objectives, we propose the Open-
World 3D Detector (OW3Det). We apply knowledge dis-
tillation (KD) restrictions on the network through logit
KD [9] and label KD [10] to preserve memories. The logit
KD extracts output responses from the previous model to
provide guidance, while the label KD utilizes predictions
from the original network for label assignments. To eliminate
unnecessary restrictions during incremental learning, We
propose the unknown-driven pivotal mask for knowledge
distillation. Distinct from existing works, the knowledge
distillation with the unknown-driven pivotal mask applies
relatively weak supervision signals to pixels that overlap
with unknown instances or belong to backgrounds, thereby
removing unnecessary constraints. Meanwhile, regions with
known objects are restricted by the distillation loss to alle-
viate forgetting. By utilizing the proposed mask, we further
minimize misleading predictions to carry on accurate label
assignments. To summarize, our contributions are as follows:

• To the best of our knowledge, our work is the first
to formally define the open-world 3D object detection
task for LIDAR point clouds, which is composed of
the open-set detection task and the incremental learning
task.

• We propose a novel framework, OW3Det, comprising a
base detector, a self-supervised unknown identifier, and
a knowledge-distillation-restricted incremental learner
to address the challenges of open-world 3D object
detection.

• The unknown-driven pivotal mask is employed to re-
lieve unnecessary knowledge distillation restrictions.

• We construct evaluation protocols to measure the ef-
ficacy of open-world 3D detectors and demonstrate
the proposed OW3Det achieves state-of-the-art perfor-
mance.

II. RELATED WORK

A. Closed-set 3D Object Detection

To capture features from sparse and irregular LIDAR point
clouds, most existing approaches first used a 3D backbone
to convert the point cloud into regular representations, such
as regular voxels [11], or pillars [2]. Another stream of
research [12] directly operated on raw point clouds without
quantization before feature extraction. Since LiDAR and
camera are a pair of complementary modalities, researchers
began fusing multi-sensor information at the proposal-
level [13] and point-level [14]. 3D detection heads were then
employed to identify instances, including anchor-based [2],
center-based [3], and transformer-based [4]. To reduce the
computation overhead, [15] extended knowledge distillation
to 3D object detection to build efficient 3D detectors by
performing distillation on areas containing objects. This

inspires us to further minimize distillation restrictions on
regions containing unknown instances and focus on positions
where exist known objects.

B. Open-world Recognition

Existing closed-set and static methods encountered sig-
nificant obstacles when deploying in real-world scenarios.
Therefore, endowing models with open-set and incremental
learning capabilities has aroused significant interests. [16]
formulated open-set recognition by balancing the perfor-
mance of one-vs-rest classifiers and the open space risk. [17]
preserved the original model by restricting the cross-entropy
loss with knowledge distillation. [7] formalized open-world
recognition by combining open-set and incremental tasks.
[8] further extended open-world to object detection using
the energy-based unknown classifier and the example replay.
Based on vision transformers, a single-stage open-world
object detector was proposed by [18] to better model the
context and discover potential unknowns in an attention-
driven manner. Despite these progress, open-world 3D object
detection is still under-explored, which motivates us to
propose the OW3Det to achieve open-world objectives.

III. OW3DET: OPEN-WORLD 3D DETECTOR

A. Problem Formulation

In this section, we formalize the definition of open-world
3D object detection. We denote by Kt = {1, 2, . . . , C} the
set of C known object categories at time step t. To real-
istically simulate dynamic and diverse driving scenes, some
unknown classes U t = {C+1, . . . } might be encountered at
test time. Let P be the input LIDAR point clouds with their
associated ground-truth Gt. Each point in the training sample
P is represented by its 3D location and reflectance. The cor-
responding annotation Gt = {g1, . . . ,gN} encodes ground-
truth labels gi = (yi,qi, si, ei) of N object instances,
where yi is the class label, qi = (ui, vi, di) represents the
3D center location, the bounding box size is expressed by
si = (wi, li, hi), and ei = (sin(ri), cos(ri)) denotes the yaw
rotation along the z-axis.

In the open-world 3D object detection setting, a model
M t at time t is trained to identify objects belonging to
previously encountered classes Kt. Due to the potential
security threat posed by certain unknown categories N t+1 =
{C+1, . . . , C+n}, a set of unknown instances Ut ⊂ U t are
forwarded to the ground-truth oracle which can provide the
associated annotations Gt+1 of N t+1. It should be noted that
instances of old classes are not annotated. The incremental
learner is employed to gradually incorporate novel classes
into the existing knowledge base without retraining from
scratch. The known categories are expanded from Kt to
Kt+1 = Kt ∪N t+1. Simultaneously, the unknown identifier
learns to assign instances belonging to the updated unseen
classes U t+1 = {C + n + 1, . . . } with the unknown label
(denoted by 0). Detectors under the open-world settings
continue the aforementioned cycle over their lifespan to
adaptively update themselves without compromising the ex-
isting knowledge.
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Fig. 2. The proposed OW3Det framework employs a static model Mt to generate preliminary detection results. To locate unseen instances, the auto-
labeling module is introduced to train the unknown identifier in a self-supervised manner. The incremental learner gradually incorporates novel concepts
into the existing knowledge base with restrictions from knowledge distillation. The open-world training enables the base detector to achieve developmental
self-evolution by integrating the incremental learner.

B. Overall Architecture

An overview of our approach is illustrated in Figure2. A
static model M t is utilized to generate preliminary detection
results. Due to the sparse and irregular nature of the lidar
point cloud, we leverage 3D backbone [1] to extract the
bird’s eye view (BEV) level feature before conducting object
detection utilizing detectors. The 3D backbone quantizes the
point cloud into regular voxels. After inner-voxel feature
extraction, the voxel-level feature is obtained and then flat-
tened into the BEV-level feature. We adopt CenterPoint [3]
as our base detector to identify instances belonging to known
categories. By leveraging keypoint estimation to discover
objects, CenterPoint simplifies 3D detection and accurately
detects known objects in a single-stage manner.

However, there still exist numerous unseen objects in real-
world driving scenes. To address these corner cases, we
utilize the unknown identifier to discover unseen instances.
This prevents the model from assigning known labels to
unknown instances, thereby improving the reliability of the
proposed OW3Det. The training procedure of the unknown
identifier is conducted in a self-supervised manner to mini-
mize the resource consumption caused by labeling numerous
unknown objects. Meanwhile, we send unknown classes
that pose safety hazards to ground-truth oracle to generate
the corresponding annotations. Subsequently, the incremental
learner is employed to learn these novel categories. We use
knowledge distillation to alleviate the network forgetting of
originally acquired knowledge. The unknown-driven pivotal
mask is proposed to mitigate unnecessary restrictions. Posi-
tions containing objects detected by the base detector receive
more enforcement, while regions containing unknown ob-
jects obtained from the unknown identifier are less restricted,
enabling the incremental learner to incorporate novel classes.

C. Base Detctor

Given the input point cloud P , the known category Kt

and the ground-truth Gt, we utilize P and Gt to train a
CenterPoint detection head that can recognize categories

belonging to Kt as the base detector. By taking BEV-level
feature as input, the base detector locates objects via keypoint
estimation. The predicted heatmap Ĥ ∈ [0, 1]W×H×C of
size W × H is generated for C classes in Kt, which is
used to detect objects. Each local maximum (i.e., pixels
whose heatmap score is greater than its eight neighbors) in Ĥ
indicates an object center. The training target H of heatmap
is obtained by drawing Gaussian kernels on the ground-truth
object centers as follows:

Hp,c = max
i:yi=c

exp

(
− (p− qi)

2

2σ2
i

)
, (1)

in which c ∈ Kt, p denotes the position at the target
heatmap, and σ is the Gaussian radius controlling the size of
the Gaussian peak. The use of Gaussian kernels, instead of
simply setting the positions on the heatmap corresponding
to the center of ground-truth objects to 1, provides denser
supervision signals and accelerates convergence. We utilize
focal loss [19] to calculate the training objective of the
heatmap as follows:

Lhm(Kt) =
−1

N

∑
p,c


(1− Ĥp,c)

α log(Ĥp,c) if Hp,c = 1

(1−Hp,c)
β(Ĥp,c)

α

log(1− Ĥp,c)
otherwise

,

(2)
where N represents the number of ground-truth instances in
Gt, α and β are hyperparameters.

To retrieve bounding boxes, a regression map R̂ =
[Ŝ, Ô, Ê] shared by all classes is simultaneously generated.
This predicted regression map R̂ is composed of three sub-
maps, where Ŝ denotes the size prediction, Ô refers to the
local offset, and Ê represents the rotation estimate. The loss
of the regression map R̂ can be expressed as follows:

Lreg(Gt) =
1

N

N∑
i=1

(|Ŝqi − log(si)|+ |Ôqi − oi|+

|Êqi
− ei|)

, (3)
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Fig. 3. Loss computation procedure of the incremental learner. We utilize
knowledge distillation to preserve memories. The unknown-driven pivotal
mask, including the heatmap mask and label mask, is employed to reduce
unnecessary and misleading restrictions.

where oi = qi − [qi] is introduced to recover the quan-
tization error caused by the striding of the backbone. The
training objective of CenterPoint at time step t is obtained
by combining the heatmap loss and the regression loss as
follows:

Lc(Kt,Gt) = Lhm(Kt) + Lreg(Gt) (4)

At time step t, the base detector is initialized according to the
aforementioned procedure. At subsequent time steps τ > t,
the base detector is updated by integrating the incremental
learner.

D. Unknown Identifier

Most existing 3D detection methods suffer from closed-set
assumptions and label unknown instances as known objects.
Confusing known objects with unknown instances during
object detection leads to performance drops in downstream
tasks like trajectory prediction and freespace detection, which
can negatively impact the reliability of autonomous driving
systems. To address this issue, we propose a self-supervised
unknown identifier to discover unseen instances. However,
annotating all unknown objects in the training data is infeasi-
ble due to the massive resource consumption. As a surrogate,
we introduce a center-based auto-labeling module to provide
supervision signals.

Specifically, the auto-labeling module decodes unknown
object centers from the predicted heatmap Ĥ . Pixels in Ĥ
that have a high heatmap score and do not overlap with
ground-truth objects are labeled as the object centers of
candidate unknown objects. The properties of these unknown
objects are retrieved from the corresponding position in
the predicted regression map R̂. We then select the top-K
potential unknown objects sorted by heatmap score to create
the pseudo-label set, denoted as Gτ

s . At time step τ ≥ t, the
training objective of the self-supervised open-set training is
calculated as follows:

Ls = Lc({0},Gτ
s ), (5)

where the set containing only the unknown category is
denoted by {0}. Open-set training facilitates the OW3Det

to learn clear class separation in the latent space, which is
vital for discriminating unknown instances.

E. Incremental Learner

In real-world driving scenarios, traffic accidents can often
occur as a result of uncommon instances and corner cases.
To address these security risks, it is crucial to incorporate
unknown categories into the existing knowledge base of
autonomous vehicles without degrading the performance of
previously trained models. However, this can be a resource-
intensive process if done by retraining the models from
scratch. To overcome this challenge, we propose the use of
an incremental learner for adaptive knowledge acquisition.
At time step τ ≥ t + 1, we calculate the following loss to
train the incremental learner:

Lci = Lc(N τ ,Gτ ). (6)

As the labels of previous classes Kτ−1 are not provided
during incremental learning, knowledge distillation is uti-
lized to prevent the base detector from forgetting previously
learned classes. Two techniques, logit KD and label KD,
are employed for this purpose. With logit KD, the OW3Det
preserves knowledge by mimicking the output heatmap and
regression map predicted by the previous model. In label KD,
predictions from the original network are used as pseudo-
labels to provide supervision signals.

Motivated by the unbalanced ratio of informative fore-
ground to redundant background in 3D scenes, a recent
method [15] attempts to perform distillation according to
heatmap score, which enables the model to focus on regions
containing objects. However, utilizing the Gaussian kernel to
construct the training objective for heatmaps leads to inflated
heatmap scores for areas that are in proximity to known
objects, even when those positions contain unknown objects.
This limits the ability of the incremental learner to learn
novel categories. While enforcing output-level imitation on
positions containing known instances facilitates preserving
memories, distillation on regions including unseen objects
can be detrimental to the incremental learning process. In
addition, the previous model may produce misleading results,
which could also impose unnecessary constraints.

Distinct from previous methods, we propose the unknown-
driven pivotal mask to alleviate the restrictions on areas
overlapping with unseen instances during incremental learn-
ing. The Unknown-driven pivotal mask is composed of two
constituent parts: a heatmap mask m̃ responsible for logit
KD and a label mask m̊ responsible for label KD. In
logit KD, we use m̃ to control the penalties of knowledge
distillation for each position in the heatmap, which can be
calculated as follows:

m̃b = Ĥτ−1
b (1− Ĥτ−1

u )(1− max
i∈N τ

Ĥτ−1
i ), (7)

where b ∈ Kτ−1, u ∈ {0}, Ĥτ−1
b denotes the heatmap

predicted by the previous base detector, and Ĥτ−1
u is ob-

tained from the previous unknown identifier. Heatmap mask
m̃ indicates where to learn and what information should not
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TABLE I
DATA SPLIT FOR THE PROPOSED EVALUATION PROTOCOL, WHERE CLASSES WITH ✓REPRESENT BEING INTRODUCED AS PART OF THE CURRENT TASK.

ABBREVIATIONS: CONSTRUCTION VEHICLE (C.V.), PEDESTRIAN (P.E.D.), MOTORCYCLE (MOTOR.), TRAFFIC CONE (T.C.).

Task Car Bus Bicycle P.E.D. Truck C.V. Trailer Barrier Motor. T.C.

Open-world
T t ✓ ✓ ✓ ✓

T t+1 ✓ ✓ ✓
T t+2 ✓ ✓ ✓

Incremental
5+5 ✓ ✓ ✓ ✓ ✓
7+3 ✓ ✓ ✓
9+1 ✓

TABLE II
OPEN-WORLD 3D OBJECT DETECTION RESULTS ON THE PROPOSED EVALUATION PROTOCOL. THE METRIC MARKED WITH ↓ INDICATES THAT A

LOWER VALUE REPRESENTS BETTER PERFORMANCE, WHEREAS THE METRICS WITH ↑ SHOULD HAVE HIGH VALUES FOR OPTIMAL PERFORMANCE.
THE BEST RESULTS, EXCEPT FOR THE UPPER BOUND, ARE HIGHLIGHTED IN BOLD.

Task T t T t+1 T t+2

Method mAOSE↓ mAPcur ↑ mAOSE↓ mAPpre ↑ mAPcur ↑ mAPboth ↑ mAPpre ↑ mAPcur ↑ mAPboth ↑

Upper Bound 11568.50 70.2 6247.25 70.2 37.8 56.3 56.3 66.7 59.4
Finetuning 15173.00 70.7 13067.50 0 34.4 14.7 0 59.9 17.9

OW-DETR
12156.50 70.3

8819.00 63.0 24.0 46.3 43.9 47.0 44.8
OW3Det 8613.25 69.4 33.4 54.0 51.6 58.9 53.8

be forgotten, which facilitates fine-grained enforcement of
knowledge distillation. The loss function of logit KD can be
expressed as follows:

Lp =
∑
b

E[m̃b||Ĥτ
b − Ĥτ−1

b ||2] + Lkd
reg(R̂

τ , R̂τ−1), (8)

where E represents the average operator, Lkd
reg denotes L1

regression loss, R̂τ and R̂τ−1 are the current and previ-
ous regression maps, respectively. Only regions containing
previously learned objects get strong penalties to mitigate
forgetting, while positions with unknown instances and back-
grounds are not supervised by the distillation loss.

We employ the label KD as a complementary approach to
the logit KD. Object centers and properties are decoded from
the previous base detector’s heatmap Ĥτ−1

b and regression
map R̂τ−1. We create a set of pseudo-labels, denoted as Gτ

l ,
using instances with heatmap scores greater than a threshold
value of δ. To reduce misleading results, the label mask m̊
is obtained by calculating the Intersection-over-Union (IoU)
of each instance in the pseudo-label set Gτ

l with the current
ground-truth Gτ . Objects with an IoU greater than a threshold
ε are filtered out. Training loss of label KD can be expressed
as follows:

Ll = Lc(Kτ−1, m̊Gτ
l ). (9)

As illustrated in Figure3, the training objective of incre-
mental learning is obtained as follows:

Li = Lci + Lp + Ll. (10)

Without unnecessary imitation on pixels containing unknown
objects, the incremental learner is capable of extracting
features about unknown classes in these positions. Accurate
label KD is achieved by removing misleading results utilizing
m̊, which is crucial for incorporating novel concepts.

F. Joint open-world training

At time step t, we leverage the base detector and the un-
known identifier to build M t. The training loss is calculated
as follows:

Lt = λ1Lc(Kt,Gt) + λ2Ls, (11)

where λ1 and λ2 are hyperparameters that control the con-
tribution of each loss item. At the subsequent time step
τ ≥ t+1, we conduct open-world training to build Mτ . The
base detector achieves its own self-evolution by integrating
the incremental learner. A new unknown identifier is obtained
to directly replace the original one. The joint loss function
at time step τ is the combination of the self-supervised loss
and the incremental loss, as follows:

Lτ = β1Ls + β2Li, (12)

where β1 and β2 are hyperparameters. Following [8], [18], a
set of exemplars is stored and replayed after each open-world
training step.

IV. EXPERIMENTS AND RESULTS

A. Open-world Evaluation Protocol

Data split: The nuScenes dataset [6] is a large-scale
autonomous-driving dataset for 3D detection and tracking.
It includes a total of 1,000 scenes, with 700 designated for
training, 150 for validation, and 150 for testing, respectively.
As shown in TableI, for the open-world 3D detection task, we
group classes in the nuScenes into three sub-tasks to simulate
real-world driving scenes, denoted as T = {T t, T t+1, T t+2}.
This allows researchers to evaluate their models in a variety
of conditions, providing a more comprehensive assessment
of open-world performance. At each time step τ , classes in
T t, . . . , T τ are treated as known Kτ , categories in current
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TABLE III
INCREMENTAL LEARNING RESULTS OF 5+5, 7+3, AND 9+1 SETTINGS. THE BEST RESULTS, EXCEPT FOR THE UPPER BOUND, ARE IN BOLD

Setting 5+5 7+3 9+1

Method mAPpre mAPcur mAPboth mAPpre mAPcur mAPboth mAPpre mAPcur mAPboth

Upper Bound 67.7 51.1 59.4 56.3 66.7 59.4 58.0 72.3 59.4
Finetuning 0 47.8 23.9 0 64.2 19.3 0 72.2 7.2
Frozen Backbone 67.9 8.3 38.1 55.7 13.9 43.2 57.4 20.5 53.7

OW-DETR 59.0 32.8 45.9 47.8 47.4 47.7 53.2 55.5 53.4
OW3Det 63.0 44.3 53.6 54.3 60.4 56.2 56.8 62.8 57.4

classes T τ are viewed as N τ , and the remaining classes
in T τ , . . . , T t+2 are considered as unknown Uτ . During the
training on the current task T τ , labels from previous tasks are
not provided. The training scenes for each task are obtained
from the nuScenes train set, while the testing scenes are
taken from the nuScenes validation set, as the nuScenes test
set does not include annotations.

Baseline: We refer to some representative methods
from the open-world 2D object detection domain and re-
implement them in the 3D object detection domain as our
baselines. The Upper Bound represents the model that has
access to all annotations. The Finetuning setting refers to
the method of directly training using data from the new
task. Following the recent work [18], we implement their
open-world methods in 3D object detection, denoted as
OW-DETR, including the unknown identifier and examplar
replay. In this work, researchers use a transformer-based
detector to identify objects in a single-stage manner, which
is more similar to the proposed OW3Det model than the
two-stage method [8].

Evaluation metrics: In 2D open-set object detection, the
Absolute Open-Set Error (ASOE) [20] is used to report the
number of unknown objects that are wrongly classified as
any of the known classes. In the case of 3D point cloud
instances, small instances easily achieve 0 intersection over
union (IoU) even when detected with a minor translation
error. To address this issue, the nuScenes dataset defines a
match by thresholding the 2D center distance d on the ground
plane instead of IoU. Therefore, we report the mean Absolute
Open-Set Error (mAOSE) which is calculated by taking the
average of the AOSE over a set of matching thresholds
D = {0.5, 1, 2, 4}. To benchmark the incremental capability,
we calculate the mean Average Precision (mAP) averaged
over the thresholds D. mAPpre is utilized to measure the
performance of previous classes, mAPcur represents the re-
sults on novel classes, mAPboth reports overall performance
on known classes.

B. Open World 3D Object Detection Results

To demonstrate the effectiveness of the proposed OW3Det,
we conduct experiments on the open-world evaluation pro-
tocol, as shown in TableII. In task T t, the upper bound
setting with access to categories achieves the lowest mAOSE
by reducing the assignment of unknown objects as known
classes. But this, to some extent, suppresses the prediction
of known objects, resulting in a bit lower mAPcur in T t. The

TABLE IV
ABLATION STUDY ON THE 7+3 INCREMENTAL LEARNING SETTING. WE

USE THE TERM ER TO REPRESENT EXEMPLAR REPLAY, KD TO DENOTE

KNOWLEDGE DISTILLATION, AND UPM TO REFER TO THE

UNKNOWN-DRIVEN PIVOTAL MASK. THE BEST RESULTS ARE

EMPHASIZED IN BOLD.

ER KD UPM mAPpre ↑ mAPcur ↑ mAPboth ↑

0 64.2 19.3
✓ 47.8 47.4 47.7

✓ 51.2 59.7 53.7
✓ ✓ 51.9 60.4 54.4

✓ ✓ ✓ 54.3 60.4 56.2

model under the Finetuning setting lacks the ability to handle
novel objects, thereby yielding suboptimal performance on
mAOSE. Additionally, the Finetuning model’s mAPpre is
0, due to the unavailability of labels from previous tasks
during training on a new task. The all-zero matrix is used as
the training target for the previous heatmap during training,
which deteriorates predictions for the original classes. OW-
DETR attains improved mAOSE and mAPpre by utilizing
the unknown identifier and the examplar replay. However,
directly utilizing the exemplar replay requires making trade-
offs between the novel and previous knowledge. Using a
large learning rate for the backbone network is beneficial
for learning novel categories, but it also causes significant
parameter changes. This leads to the backbone disregarding
some crucial features of the old categories, making it difficult
to recover the network’s performance through replay. Our
proposed method, compared to OW-DETR, attains superior
results on all metrics. We improve mAPpre by introduc-
ing knowledge distillation restrictions. By employing the
unknown-driven pivotal mask, unnecessary enforcement is
removed to achieve a better mAPcur. We also utilize the
proposed mask to minimize misleading information, which
has been shown to provide a performance gain on mAOSE.

C. Incremental 3D Object Detection Results

We further investigate the incremental capability of the
OW3Det by conducting incremental experiments in multiple
settings, listed in TableI. The x+y setting means splitting
classes in nuScenes into previous task x and current task
y. Each model is obtained by training with previous x
classes first and then learning the current y categories in-
crementally. As shown in TableIII, the upper bound has
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access to all classes. When directly finetuning the static
to novel classes, we can obtain a model with competitive
performance on mAPcur. However, this approach results in
severe forgetting, which negatively impacts mAPpre. De-
spite freezing backbone parameters facilitating preserving
knowledge, the mAPcur significantly drops because freezing
parameters restricts the extraction of class-specific features.
The OW-DETR achieved balanced performance by making
trade-offs between the new and old knowledge. Leveraging
knowledge distillation, the OW3Det consistently outperforms
all baseline methods in terms of mAPboth. The unknown-
driven pivotal mask enables the distillation enforcement to
focus on regions containing previously learned classes. This
allows the incremental learner to incorporate new knowledge
without severe performance drops on mAPpre.

D. Ablation Study

To verify the efficiency of the components in the proposed
OW3Det, we progressively integrate them into the Funetu-
ing model. A summary of the evaluation results is shown
in TableIV. Employing the exemplar replay is beneficial
for recovering mAPpre, but it requires making trade-offs
between the performance of previous and current tasks.
Knowledge distillation gives a large performance boost by
providing supervision signals on the previous classes. This
facilitates OW3Det to preserve previous knowledge without
reducing the learning rate of the backbone network. The pro-
posed unknown-driven pivotal mask mitigates unnecessary
restrictions and eliminates misleading predictions, resulting
in an enhancement of mAPboth. Combining all components
together, OW3Det is capable of incorporating novel tasks
without severe forgetting.

V. CONCLUSION

In this paper, we formulate the open-world 3D object
detection task for autonomous driving. To achieve open-
world objectives, we propose OW3Det, which comprises
a base detector, a self-supervised unknown identifier, and
a knowledge-distillation-restricted incremental learner. We
employ knowledge distillation to mitigate forgetting. The
unknown-driven pivotal mask, including the heatmap mask
and the label mask, is proposed to alleviate unnecessary en-
forcement. Extensive experiments and visualizations demon-
strate that the proposed OW3Det attains state-of-the-art per-
formance. Moreover, a novel evaluation protocol is designed
to measure the efficacy of open-world 3D detectors. In future
work, we will explore the potential of extending the proposed
method to multi-modal 3D object detection.
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