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Neural Radiance Field (NeRF) has emerged as a promising alternative for photorealistic rendering. Despite

recent algorithmic advancements, achieving real-time performance on today’s resource-constrained devices

remains challenging. In this article, we identify the primary bottlenecks in current NeRF algorithms and

introduce a unified algorithm-architecture co-design, Potamoi, designed to accommodate various NeRF al-

gorithms. Specifically, we introduce a runtime system featuring a plug-and-play algorithm, SpaRW, which

significantly reduces the per-frame computational workload and alleviates compute inefficiencies. Further-

more, our unified streaming pipeline coupled with customized hardware support effectively tames both SRAM

and DRAM inefficiencies by minimizing repetitive DRAM access and completely eliminating SRAM bank con-

flicts. When evaluated against a baseline utilizing a dedicated DNN accelerator, our framework demonstrates

a speedup and energy reduction of 53.1× and 67.7×, respectively, all while maintaining high visual quality

with less than a 1.0 dB reduction in peak signal-to-noise ratio.

CCS Concepts: • Computer systems organization → Neural networks; Data flow architectures; Real-

time system architecture; • Computing methodologies → Rendering;

Y. Feng and W. Lin contributed equally to this article.

The work was partially supported by the National Key R&D Program of China under grant 2022YFB4501400, and NSFC

grants 62072297 and 62222210.
Authors’ Contact Information: Yu Feng, John Hopcropt Center, Shanghai Jiao Tong University, Shanghai, China; e-mail:

y-feng@sjtu.edu.cn; Weikai Lin, Department of Computer Science, University of Rochester, Rochester, New York, United

States; e-mail: wlin33@ur.rochester.edu; Zihan Liu, Shanghai Jiao Tong University, Shanghai, China; e-mail: altair.liu@

sjtu.edu.cn; Jingwen Leng (Corresponding author), Department of Computer Science, Shanghai Jiao Tong University, Shang-

hai, Shanghai, China and Shanghai Qi Zhi Institute, Shanghai, Shanghai, China; e-mail: leng-jw@cs.sjtu.edu.cn; Minyi

Guo, Computer Science, Shanghai Jiao Tong University, Shanghai, Shanghai, China and Shanghai Qi Zhi Institute, Shang-

hai, Shanghai, China; e-mail: guo-my@cs.sjtu.edu.cn; Han Zhao, Shanghai Jiao Tong University, Shanghai, China; e-mail:

zhao-han@cs.sjtu.edu.cn; Xiaofeng Hou, Shanghai Jiao Tong University, Shanghai, China; e-mail: hou-xf@cs.sjtu.edu.cn;

Jieru Zhao, Shanghai Jiao Tong University, Shanghai, China; e-mail: zhao-jieru@sjtu.edu.cn; Yuhao Zhu (Corresponding

author), University of Rochester, Rochester, New York, United States; e-mail: yzhu@rochester.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/11-ART80

https://doi.org/10.1145/3689340

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 80. Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0002-2192-5737
HTTPS://ORCID.ORG/0000-0003-3537-4857
HTTPS://ORCID.ORG/0000-0002-0874-0682
HTTPS://ORCID.ORG/0000-0002-5660-5493
HTTPS://ORCID.ORG/0000-0003-0034-2302
HTTPS://ORCID.ORG/0000-0002-1561-5329
HTTPS://ORCID.ORG/0000-0003-4372-7851
HTTPS://ORCID.ORG/0000-0001-8211-2812
HTTPS://ORCID.ORG/0000-0002-2802-0578
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689340
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689340&domain=pdf&date_stamp=2024-11-20


80:2 Y. Feng et al.

Additional Key Words and Phrases: Mobile architecture, neural rendering acceleration, virtual reality

ACM Reference Format:

Yu Feng, Weikai Lin, Zihan Liu, Jingwen Leng, Minyi Guo, Han Zhao, Xiaofeng Hou, Jieru Zhao, and Yuhao

Zhu. 2024. Potamoi: Accelerating Neural Rendering via a Unified Streaming Architecture. ACM Trans. Arch.

Code Optim. 21, 4, Article 80 (November 2024), 25 pages. https://doi.org/10.1145/3689340

1 Introduction

The Neural Radiance Field (NeRF) model [48] revitalizes classic image-based rendering tech-
niques [65, 69] using modern deep learning approaches, offering a compelling alternative to con-
ventional photorealistic rendering methods like path tracing [15, 56, 57]. However, the original
NeRF algorithm is notoriously slow [48], which has spurred numerous efforts to reduce the com-
putational demands of NeRF rendering [11, 30, 51, 55, 68, 75]. Despite these efforts, achieving
real-time performance on mobile devices remains unsolved. For example, on a mobile Volta GPU
in NVIDIA’s Xavier SoC, models like DirectVoxGO [68] can only achieve 0.8 Frames Per Second

(FPS). Even the latest developments, such as 3D Gaussian Splatting (3DGS) [33], can barely
reach 5 FPS for rendering an 800 × 800 frame on Xavier.

Although accelerating NeRF is critical, it is crucial not to over-specialize hardware for any
specific model due to the fast evolution in algorithm design. Since its introduction, NeRF mod-
els have undergone significant algorithmic transformations, evolving from the original Mul-

tilayer Perceptron (MLP)-based designs [48] to those incorporating structured representa-
tions [51, 68, 75], and most recently, to implementations utilizing 3DGS with unstructured rep-
resentations [12, 33, 38, 74]. Given the ongoing NeRF development, it is conceivable that NeRF
models will continue to evolve. Therefore, system and architectural support should address the
fundamental bottlenecks inherent to NeRF models as a whole rather than optimizing for artifact
features specific to individual models.

This article introduces Potamoi, an algorithm-architecture co-designed approach to address
fundamental inefficiencies in both computation and memory accesses inherent to a diverse set of
NeRF models.

Bottleneck Analysis. We first describe a general pipeline that unifies the computation flows
across various NeRF models (Section 2). We then analyze the performance bottlenecks using
this general pipeline. This pipeline decomposes NeRF models into three key stages: Indexing,
Feature Gathering, and Feature Computation. By analyzing the workloads across different
NeRF models, we identify their inherent bottlenecks in both algorithm design and underlying
hardware (Section 3). Algorithmically, a NeRF model processes millions of rays, each containing
hundreds of samples. Each of these samples requires executing a General Matrix Multiply

(GEMM)-based inference, collectively imposing a significant computational load [48]. Architec-
turally, the GEMMs associated with ray samples require fetching pre-trained features, leading
to irregular memory accesses. This, in turn, results in irregular DRAM accesses and SRAM bank
conflicts.

Algorithmic Support. Potamoi presents a plug-and-play extension to existing NeRF algo-
rithms and significantly reduces the computational workload of NeRF models (Section 4). Our
method, SpaRW (sparse radiance warping), reduces up to 88% of radiance computations by reusing
ray radiances in previously computed reference frames. SpaRW operates based on the observa-
tion of radiance proximity: the radiance of nearby rays originating from the same physical point
is approximately equivalent. It is worth noting that SpaRW is not a replacement for current NeRF
models; rather, it is a plug-and-play extension that can be integrated with all NeRF models.
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Runtime Support. Choosing reference frames is critical to unleash the full power of SpaRW.
We observe that reference frames do not have to be a frame on the camera’s past trajectory: ref-
erence frames merely provide pixel data used to warp target frames. We introduce a proactive
rendering runtime system (Section 4.3), which predicts optimal reference frames that are off the
camera trajectory and thus decouples the reference frame rendering from target frame rendering.
The runtime then schedules the reference and target frames to maximally overlap the rendering
of the two sets of frames.

Dataflow Optimization. SpaRW reduces, rather than eliminates, computations in NeRF mod-
els. The remaining NeRF computations are still bounded by irregular DRAM accesses and frequent
SRAM bank conflicts. Therefore, we propose two dataflow optimizations that enhance memory ef-
ficiency during radiance computation (Section 5). First, to mitigate irregular DRAM accesses, we
propose to shift NeRF from a pixel-centric order to a memory-centric order. Our memory-centric
order accesses the scene representations sequentially, inherently yielding full-streaming memory
accesses. Second, to tackle SRAM bank conflicts, we introduce a novel data layout strategy. Instead
of the traditional feature-major data layout, which stores an entire feature vector within a single
SRAM bank, we propose a channel-major layout where different channels of the same feature
vector are distributed across multiple SRAM banks.

Hardware Augmentation. To effectively support our two dataflow optimizations, we have en-
hanced the classic systolic array architecture with two significant augmentations. First, we extend
the existing vector unit to support exponential computations, a necessity for the Feature Compu-
tation in 3DGS. Second, we introduce a dedicated Gathering Unit (GU) designed specifically to
accommodate our novel data layout. This new unit is tailored to manage the channel-major layout
of data across multiple SRAM banks, ensuring that on-chip bank conflicts are eliminated.

The contributions of this article are as follows:

• We introduce SpaRW, a novel algorithm that reduces up to 88% of the GEMM in NeRF by
exploiting radiance similarities between nearby rays.

• We propose a unified fully streaming framework for NeRF that reduces the redundant DRAM
access and eliminates SRAM bank conflicts, ensuring complete streaming DRAM accesses.

• We augment associated hardware supports on the existing accelerator to support our stream-
ing algorithms, and make it compatible across various NeRF models with structured and
unstructured representations.

• We integrate Potamoi with six state-of-the-art NeRF solutions and demonstrate that Pota-
moi achieves a 53.1× and speedup and 67.7× energy savings over a baseline with a dedicated
Deep Neural Network (DNN) accelerator while maintaining less than 1.0 dB degradation
in Peak Signal-to-Noise Ratio (PSNR).

2 Background

In this section, we start with reviewing the fundamentals in NeRF (Section 2.1). Then, we propose
a unified framework to express general NeRF algorithms (Section 2.2).

2.1 NeRF Fundamentals

The debate between neural rendering and traditional ray tracing (physically based rendering) [57]
is a widely contested topic in graphics. Our work does not seek to settle this debate; instead, we
aim to enhance the efficiency of neural rendering, making it a more compelling option.

Fundamentally, NeRF rejuvenates the classic image-based rendering techniques [65] by learning
the light field [24, 41] of a scene using modern deep learning methods. NeRF does away with
detailed 3D modeling and physically simulating light transport in space. It avoids the complicated
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Fig. 1. The rendering pipeline of today’s NeRFs consists of three stages: Indexing (I), Feature Gathering (G),

and Feature Computation (F ). For NeRFs with structured representations, each ray first samples points (S1,

S2, and S3) along the ray direction. Each ray sample gathers and interpolates 3D features from eight vertices

of the intersected voxel (V3,V32, andV81) to obtain features (F1, F2, and F3), as highlighted in purple. For NeRFs

with unstructured representations, each ray directly intersects with Gaussian points (P3, P13, and P111) to

obtain features, as highlighted in green. Then, the features are fed into the GEMM-based computation to

get the partial pixel values, as highlighted in orange. The final pixel value is summed from all partial pixel

values [48].

setup in ray tracing (e.g., modeling the geometry of the scene and describing material properties).
Instead, NeRF uses offline-captured images of a scene to train a differentiable model, which encodes
the volume density and the light field in the scene (i.e., radiance of any ray) [24, 41]. At rendering
time, given the camera pose where an image is to be rendered, the model is probed through the
classic volume rendering [32, 40] to synthesize the image.

Existing NeRF algorithms can be classified into two main categories: MLP-based models with
structured representations [11, 51, 68] and 3DGS with unstructured representations [12, 33, 38, 74].
Structured representations capture the geometry of the physical world using regular voxel grids,
where the granularity of the voxels directly impacts the rendering quality and model size. However,
unstructured representations are more flexible: the scene is represented by a point cloud, and each
point is, in turn, represented by an ellipse whose shape and color are learned in training. The
overall sizes of these unstructured representations are determined by two: the total number of
Gaussian points and the parameter configurations of each Gaussian point.

2.2 General NeRF Pipeline

Despite numerous variants, we find that all prior NeRF algorithms can fit into a single computa-
tional paradigm. In this paradigm, the general NeRF pipeline consists of three stages: Indexing (I),
Feature Gathering (G), and Feature Computation (F ), as illustrated in Figure 1.

Indexing (I). NeRF renders images in a pixel-centric order. In this order, we first generate a ray
for each pixel to be rendered. Depending on the scene representation, rays have different fashions
to sample points. With structured representation, each ray uniformly samples a set of points (e.g.,
S1, S2, and S3 in Figure 1) along its direction. In contrast, with an unstructured representation,
each ray directly interacts with specific Gaussian points it intersects. For instance, in Figure 1, the
ray would directly intersect with P3, P13, and P111 at S1, S2, and S3, respectively. Any points that
intersect with the ray contribute to the final pixel value.

Feature Gathering (G). In this step, each ray sample gathers corresponding features for Fea-
ture Computation. These features encode both the density and radiance field at the corresponding
locations. With structured representation, each ray sample would calculate the ID of the voxel
that contains the sample. Using the voxel ID, each ray sample finds the eight vertices of that voxel
and gathers the features of the eight vertices. In the example in Figure 1, S1 would access the eight
vertex features in V3. This ray sample then computes its feature by trilinearly interpolating the
feature vectors of the eight vertices. With unstructured representation, each sample would directly
apply the feature of the intersected Gaussian points. For instance, S1 would apply the feature at P3.
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Fig. 2. Frame rate vs. model size on the Xavier SoC

[53] across state-of-the-art NeRF algorithms [11, 14,

28, 33, 51, 68].

Fig. 3. Normalized execution breakdown across state-

of-the-art NeRF algorithms [11, 30, 33, 38, 51, 68].

Feature Computation (F ). In Feature Computation, each ray sample passes its intermediate
feature through a lightweight rendering model to obtain that sample’s actual density and radiance
value. Varied by designs, the major computation in the rendering model could be GEMM or other
vector multiplications. For instance, Instant-NGP applies a lightweight MLP-based model to infer
the radiance value while 3DGS leverages high-order spherical harmonics to approximate the radi-
ance variation of a given point. The final color of a ray (and thus the color of the pixel that is hit
by the ray) would be computed by accumulating all ray samples along the ray direction.

3 Motivation

In this section, we first profile the existing NeRF algorithms and identify the performance bottle-
neck, Feature Gathering, across NeRF algorithms (Section 3.1). Next, we characterize the memory
inefficiencies in Feature Gathering (Section 3.2).

3.1 Computation Inefficiencies

Performance and Model Size. Today’s NeRF models not only suffer from low performance but
also present model storage challenges that could not fit in on-chip SRAMs. Figure 2 shows the
distribution of model size (x-axis) and frame rate (y-axis) for six state-of-the-art NeRF models [11,
14, 28, 33, 51, 68] on a mobile Volta GPU [53]. By overlaying the 60 FPS runtime requirement,
current NeRF algorithms cannot achieve real-time rendering on mobile devices.

Moreover, the size of NeRF models greatly surpasses the SRAM capacities of a typical modern
mobile SoC, which leads to frequent DRAM accesses. In particular, a significant bulk of the model
size is constituted by the feature vectors of the voxels, which range from approximately 10 to 1,000
MB. In contrast, the model weights in Feature Computation are relatively small, usually between
10 and 100 KB.

Performance Bottleneck. Figure 3 shows the execution breakdown of different stages across six
popular NeRF algorithms on a mobile Volta GPU [53]. All three stages take non-trivial execution
time with Feature Gathering dominating the execution (>64% of execution time on average).

3.2 Memory Inefficiencies

Given the memory-intensive nature of Feature Gathering, we characterize its memory access pat-
terns. Although Feature Gathering benefits from computational parallelism (both across different
rays and between samples on a single ray), it does not translate well to memory efficiency, leading
to irregular DRAM accesses and frequent on-chip SRAM bank conflicts.

DRAM Access Inefficiency. The inefficiency in DRAM access can be attributed to two main fac-
tors: non-streaming DRAM access and redundant DRAM access, both stemming from the inherent
pixel-centric rendering in NeRF models.
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Fig. 4. Percentage of non-continuous DRAM

accesses in Feature Gathering (G).

Fig. 5. On-chip memory miss rate in Feature Gathering

(G) across NeRF algorithms.

NeRF inference is parallelized across pixels as shown in Section 2.2. This pixel-centric render-
ing approach, however, introduces two distinct levels of memory-access irregularities: inter-ray
and intra-ray irregularity. Inter-ray irregularity is from that two rays corresponding to adjacent
pixels might access non-continuous memory regions. Despite originating from spatially close
points, these rays may diverge as they travel through space, leading to varied memory access
patterns.

Intra-ray irregularity arises when sampling points along a single camera ray access discon-
tinuous memory regions. This occurs because the feature vectors corresponding to different
ray samples may be stored at arbitrary locations in memory. As shown in Figure 1, for un-
structured representations, ray samples, S1 and S2, intersect points, P2 and P13; for structured
representations, ray samples, S1 and S2, intersect voxels, V3 and V32. In both scenarios, gath-
ered features are spatially separate and stored discontinuously in DRAM. Figure 4 shows
the non-streaming DRAM access in six popular NeRF algorithms. More than 87% of DRAM
access is non-streaming. In particular, Instant-NGP, 3DGS, and Compact3DGS all have high
non-streaming DRAM access (>99%) due to irregular memory access to their naive feature
representations.

Given that the entire feature representations cannot be stored completely on-chip (see Figure 2),
both types of irregularities would lead to repetitive redundant accesses to each voxel during
rendering, which translates to redundant DRAM accesses. Given an on-chip buffer size of 2 MB
with oracle replacement [53], Figure 5 presents the cache miss rates for various NeRF algorithms
during Feature Gathering. The miss rate can be as high as 92% (average 41%). Practically, an even
smaller on-chip buffer is expected to accommodate feature representations, further degrading
rendering performance.

SRAM Access Inefficiency. On-chip memory access in NeRF results in frequent bank conflicts.
In conventional DNNs, the memory access patterns can be determined statically. Thus, bank con-
flicts can be eliminated through meticulous data layout across SRAM banks [34, 78]. Conversely,
the data access pattern of Feature Gathering in NeRF depends on the camera view and cannot be
known offline.

Section 5.2 will provide a detailed description of the causes of bank conflicts in Feature Gathering.
Here, we simply show the bank conflict rate of Feature Gathering across NeRF algorithms (Figure 6).
Assuming a 2 MB buffer with 16 banks and 16 concurrent camera rays, the average bank conflict
rate is 51%, with EfficientNeRF reaching as high as 83%. A larger number of concurrent rays would
lead to a higher bank conflict rate. For instance, the bank conflict rate of Instant-NGP increases
to 80% when the number of rays escalates to 64 (Figure 8). Increasing the number of banks does
alleviate bank conflicts. However, heavily banked SRAM designs are highly undesirable due to
costly crossbars [1, 26].
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Fig. 6. SRAM bank conflict rate in

Feature Gathering (G), assuming

16 banks and 16 concurrent ray

queries.

Fig. 7. The overlapping percentage

across six scenes in Synthetic-NeRF

[48].

Fig. 8. Profiling SRAM bank

conflicts of Instant-NGP with

various banks and concurrent

queries.

Fig. 9. Intuition of our SpaRW algorithm. The radiance of the PPx ray can approximate the radiance of

the PPy ray if the angle θ between these two rays is sufficiently close. Leveraging this intuition, we show

examples of a reference frame Fr ef , a result of naive warping F ′tдt , and our result Ftдt by SpaRW. Note that

disocclusions (missing pixels) are eliminated in our result.

4 Sparse Radiance Warping

This section introduces SpaRW, an algorithm that exploits the radiance similarity across rays from
nearby camera views. We first provide an intuition of the SpaRW algorithm (Section 4.1), followed
by a description of the overall algorithm (Section 4.2). Last, we discuss a customized runtime to
support SpaRW (Section 4.3).

4.1 Intuition

The goal of SpaRW is to reuse pixel values rendered in previous frames using a technique called
image warping. Figure 9 illustrates our idea, which starts from a previously rendered frame, called
a reference frame, Fr ef . For a given pixel in Fr ef , say Px , we can find the point in the scene P that
is captured by that pixel. When rendering a new target frame Ftдt , the same point P is captured
as a new pixel Py in the target frame Ftдt . The assumption here is that if the camera poses of

Ftдt and Fr ef are sufficiently close, the radiance of both PPx ray and PPy ray are approximately
similar. Thus, the pixel value Px can be simply reused in Py , avoiding rendering Py through the
compute-intensive NeRF model.

This warping idea avoids rendering pixels in Ftдt whose corresponding scene points are also
captured by Fr ef . The larger the overlap between Fr ef and Ftдt is, the less NeRF computation is
required. Figure 7 characterizes the overlapping between two adjacent frames in the Synthetic-
NeRF dataset [48]. More than 98% of pixels are overlapped (standard deviation: 1.7%), indicating
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Fig. 10. An overview of the SpaRW algorithm. Only reference frames (Ri ) undergo full-frame NeRF inference

as denoted by the green path. All target frames (Ti ) are computed using the lightweight warping operations

denoted by the orange path. The reference frames are not on the camera trajectory, so reference frame

rendering and target frame rendering can be overlapped. Camera poses at reference frames are extrapolated

using the previous camera poses.

that less than 2% of pixels require re-rendering. The same conclusion holds for real-world datasets:
on the Unbounded-360 [6] and Tanks and Temples [35] datasets, only 4.3% and 4.9% pixels cannot
be warped, respectively. The high overlap is not an artifact of a particular dataset but a fundamen-
tal attribute of real-time rendering, where consecutive frames are necessarily in close proximity
because the observer/camera does not jump arbitrarily.

The non-overlapped pixels, called disoccluded pixels, arise when the previously occluded scene
in Fr ef becomes visible in Ftдt . Figure 9 shows the effect of a naive warping. Without recalculating
the disoccluded pixels, the rendered image F ′

tдt has clear “holes,” because the disoccluded pixels

cannot be warped from the reference frame. Our idea then is to calculate the disoccluded pixels
using the original NeRF model, which now renders only a small amount of (e.g., 2%) sparsely
disoccluded pixels in the target frame.

4.2 Basic Algorithm

In SpaRW, there are two rendering paths, which are illustrated in Figure 10: a compute-intensive
path (in green) to render reference frames (R0 and R1) using full-frame NeRF rendering, and a
lightweight path (in orange) that uses the warping idea in Section 4.1 to render target frames (T0–
T5). We first describe how to warp from a reference frame to a target frame, then discuss the choice
of reference frames.

Target Frame Rendering. There are four steps in rendering a target frame: 1 point cloud
conversion, 2 transformation, 3 re-projection, and 4 sparse NeRF rendering.

1 Given a reference frame Fr ef , we first convert Fr ef into a point cloud Pr ef , which represents
the 3D scene in the reference camera coordinate system. The transformation uses scene depth and
the camera’s intrinsic parameters. Mathematically, it can be expressed as follows:

Pr ef =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Dr ef

f
0 −

Dr ef Cx

f

0
Dr ef

f
−

Dr ef Cy

f

0 0 Dr ef

⎤
⎥
⎥
⎥
⎥
⎥
⎦

× Fr ef , (1)

where Dr ef is the depths of points in Pr ef corresponding to pixels in Fr ef , Dr ef can be obtained
through a standard rasterization pipeline (using a depth buffer) [63], f is the camera focal length,
and [Cx ,Cy] is the camera center. Both the focal length and camera center are part of the camera’s
intrinsic parameters [21].

2 The Pr ef calculated so far is expressed in the coordinate system of the reference frame. To
render the target frame, we must transform the point cloud to the coordinate system of the target
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frame—using a simple linear transformation:

Ptдt = Tr ef →tдt × Pr ef , (2)

whereTr ef →tдt is the transformation matrix between the reference camera pose Ri and the target
camera pose Ti ; Ptдt denotes the point cloud in the target frame’s coordinate system.

3 Once we have Ptдt expressed at the current camera coordinate system, obtaining the frame
at the current camera pose requires a standard perspective projection in the classic rasterization
pipeline [63]:

F ′
tдt =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f

Dtдt
0 0 Cx

0
f

Dtдt
0 Cy

0 0 1
Dtдt

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

× Ptдt , (3)

where Dtдt is the depth of all the points corresponding to the pixels in the target frame. A standard
depth buffer technique (also known as a z-buffer) is used to maintain the correct depth of objects
in 3D space from the camera perspective.

4 As shown in Figure 9, naively warped frame F ′
tдt contains disocclusion artifacts. To mitigate

disocclusions, we simply run the original NeRF model for those disoccluded pixels,

Ftдt = F ′
tдt � Γsp . (4)

Γsp denotes sparse NeRF rendering of disoccluded pixels, and � combines the warped pixels with
NeRF-rendered pixels.

Interestingly, “holes” in a target frame can be attributed to two factors: disocclusion and void
(i.e., areas in the scene where there is nothing). To avoid unnecessary computation on the latter,
we perform a simple depth test so that pixels whose depth is infinite are skipped in sparse NeRF
rendering. The depth map of the current frame can be obtained through, again, the standard per-
spective projection. The overhead of such a projection is minimal. In our measurement, the latency
of processing, for example, 1 million points, is less than 1 ms on an NVIDIA Volta mobile GPU.

4.3 Proactive Rendering Runtime

In SpaRW, the rendering of a target frame depends on the existence of a reference frame. The choice
of reference frames and when to render them affect both the rendering quality and the performance.
Rendering reference frames on the trajectory is a common strategy in previous work [10, 20, 66, 79].
The idea is that adjacent frames are highly correlated so one can extrapolate from a previously
rendered frame to render the current frame. While this approach is work-efficient since reference
frames are required to be rendered regardless, it has an inherent limitation in which it poses the
data dependency between reference frames and target frames. Specifically, a reference frame can
only be rendered after the completion of the previous target frame. This dependency inherently
forces the rendering process into a serial order, where target frames and reference frames cannot
be rendered concurrently, potentially slowing down overall system performance.

Our key observation is that a reference frame can be any frame, even those that are not on
the camera’s trajectory, such as R0 and R1 in Figure 10. As long as the reference frame is close
to the camera trajectory, the radiance approximation still holds. We introduce a runtime system
that predicts suitable reference frames off the trajectory; that way, we can overlap reference frame
rendering with target frame rendering. As depicted in Figure 11, our runtime system comprises
three key components: a predictor, a scheduler, and a rendering engine.

Predictor. We introduce a proactive approach to predict camera poses for future reference
frames. The idea is that reference frames might not be the frames viewed by users. Rather, the
primary functionality of reference frames is to supply pixel information for target frames. To this
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Fig. 11. Proactive rendering runtime consists of three key components: a predictor, a scheduler, and a render-

ing engine. The predictor proactively predicts the future camera poses for reference frames, and the predicted

poses (Ri ) are sent to the task dispatcher along with real-time camera poses (Ti ) for target frames. The sched-

uler then dispatches tasks to the corresponding renderers to achieve concurrent rendering for reference and

target frames in Figure 10. Our runtime also allows reference frames to be offloaded to a remote server by

leveraging cloud computing resources. Once the reference frames are finished, the remote server will send

them back to the reference frame buffer.

end, we propose a lightweight direction predictor that utilizes a brief history of past camera poses
to predict the future direction of the current trajectory. In particular, our direction predictor takes
the five previous camera poses as input and uses a Bayesian Ridge regression model [71] to esti-
mate the upcoming camera direction. Experimental results show that our predictor maintains a
low prediction error (<0.01 rad) with a negligible runtime overhead.

Once the camera direction is predicted, we use the position of the last two rendered frames, T1

andT2, to calculate the current velocityv atT2,v = T2−T1

Δt
, where Δt represents the interval between

two consecutive frames. We then calculate the pose of the reference frame, R1 = T2 +v × tr , tr =
N
2 Δt , where N is the number of target frames that share the same reference frame (i.e., four in this

example as T2–T5 share R1). Δt represents the interval between two consecutive frames. Using N
2

allows the reference frame to be roughly at the center of, and thus increase the overlap with, its
target frames.

Scheduler. Both predicted and current camera poses are sent to the task dispatcher, which
inserts rendering tasks into the frame queue. Depending on the type of camera pose, the rendering
tasks will be dispatched to the corresponding renderers. For instance, a predicted camera pose (R1)
would invoke a full-frame rendering task to the NeRF renderer while a target camera poseT3 will be
dispatched to the sparse renderer simultaneously. Our strategy can effectively hide the latency of
reference frame rendering by overlapping with rendering multiple target frames. Our experiment
shows that a single reference frame can effectively support up to 30 target frames with minimal
loss in visual quality (Section 8.2).

Meanwhile, a control logic continuously monitors the task scheduling to guarantee two prop-
erties. First, the control logic would check the data dependencies among the rendering tasks so
that no target frame rendering would be dispatched without its corresponding reference frame
rendered. Second, if the angle (θ ) subtended by a ray in the reference frame and its corresponding
ray in the target frame exceeds a pre-defined threshold (ϕ), the control logic would stop the frame
warping process and initiate a full-frame NeRF rendering task instead. This ensures that rendering
quality is guaranteed with no significant delays.

Rendering Engine. Once a rendering task is dispatched, the rendering engine activates a
corresponding renderer based on the task type. For example, a reference frame rendering task is
directed to the NeRF renderer, which activates full-frame NeRF rendering to generate a reference
frame and stores it in the reference frame buffer. Here, we maintain a dedicated reference buffer,
enabling the sparse renderer and the NeRF renderer to execute concurrently without mutual
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interference. Meanwhile, leveraging the previously generated reference frame, the sparse renderer
performs sparse NeRF rendering along with other lightweight computations shown in Figure 10.
To facilitate efficient processing, the rendering buffer is double-buffered, allowing it to hold some
intermediate data during the execution of SpaRW.

Support Remote Rendering. Our runtime system also supports offloading the heavy full-frame
NeRF rendering to a remote server and receives the rendered result from the remote server as
highlighted in Figure 11. The end of Section 7 describes the rationale of remote rendering, and
Section 8.3 quantifies the advantage of SpaRW in remote rendering.

5 Memory Optimizations

While SpaRW reduces NeRF computation of target frames, reference frames still execute full-frame
NeRF rendering, which is bottlenecked by redundant and irregular DRAM accesses of feature vec-
tors and the frequent on-chip bank conflicts as shown in Section 3.2. This section first describes an
algorithmic optimization that eliminates redundant DRAM accesses and guarantees fully stream-
ing DRAM accesses (Section 5.1). We then discuss a new on-chip data layout that eliminates SRAM
bank conflicts (Section 5.2).

5.1 Fully Streaming NeRF Rendering

Architectural Assumptions. We assume a DNN accelerator for MLP operations. The accelerator
has an on-chip buffer (scratchpad) to store 3D feature vectors (either voxel features in structured
representations or point features in unstructured representations) in the NeRF model. However,
this buffer is generally too small (1–3 MB) to hold all feature vectors (10–1,000 MB). Additionally,
there is a dedicated on-chip buffer to store NeRF model weights; these weights are generally small
(10–100 KB).

Memory-Centric Rendering. We propose a memory-centric rendering, where the order of com-
putation is based on where the ray samples reside in the DRAM. At a high level, we sequentially
read, in chunks, feature vectors that are contiguously laid in memory. As each chunk is loaded
to the on-chip SRAM, we render the ray samples whose feature vectors happen to reside in the
chunk. We throw away the chunk only after all the associated ray samples have been computed.
In this way, we guarantee that each feature vector is read only once and the DRAM accesses to the
feature vectors are fully streaming. Memory-centric rendering incurs no additional storage over-
head. The vertex features are stored in memory as is, without duplication. What is being reordered
is the feature accessing order. Figure 12 illustrates this idea and how the three stages in NeRF are
changed accordingly.

Indexing (I). We first group spatially close feature vectors into “macro voxels” (MVoxels). For
instance, with structured representation, in Figure 12, we can combine every 2 × 2 voxels into
one MVoxel; with unstructured representation, we group all point features confined within one
MVoxel. All the data in a MVoxel is loaded to the SRAM together when the MVoxel is loaded.
The intention here is that, via offline analysis, we guarantee that the overall data stored in one
MVoxel is smaller than the on-chip buffer size. To better exploit memory locality, features within
one MVoxel are stored continuously in the DRAM, the same as MVoxels.

We then compute a Ray Index Table (RIT), where each MVoxel has an entry. Each entry
records the IDs of all the ray samples whose features reside in that particular MVoxel. Note that
the ray sample-to-voxel mapping has to be calculated in the original NeRF models too; we simply
group all such calculations and store the results in a table.

Feature Gathering (G) and Feature Computation (F ). During gathering, we load the MVox-
els from the DRAM to the SRAM sequentially. When an MVoxel is loaded, we look up the RIT to
find all the ray samples that can be computed. A standard double buffer is used here to overlap
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Fig. 12. Fully streaming NeRF rendering algorithm for structured representations [11, 51, 68]. We first group

all the voxels into MVoxels, which are continuously stored in the DRAM. The RIT records, for each MVoxel,

the IDs of ray samples whose features reside in the MVoxel. During Feature Gathering (G), the entries in

the RIT are sequentially accessed, essentially streaming the MVoxels from the DRAM. Each time an MVoxel

is loaded on-chip, we process all the ray samples whose feature vectors are in that MVoxel. The Feature

Computation stage is unchanged.

MVoxel loading and the on-chip computation. Feature Computation remains unchanged compared
to the baseline NeRF rendering.

In practice, we first group a set of nearby rays into a ray group. For each ray group, we identify
MVoxel IDs that all ray samples in the ray group would index to, from the near-camera point to
the far distance. Based on the indexed MVoxel IDs, these ray samples are gathered into a RIT. The
Feature Computation is also performed starting from the near-camera MVoxel, thus the early ray
termination in the general NeRF rendering still applies.

Accommodating Unstructured Representation. The naive approach to adapting an unstruc-
tured representation is, at Indexing (I), to uniformly partition the entire scene space into the
same-size MVoxels while ensuring that the point features within one MVoxel can fit in the on-
chip buffer. However, this uniform partitioning often leads to significant under-utilization of the
on-chip buffer. The root cause is that Gaussian points are not evenly distributed across the space,
so there would be many MVoxels that contain no Gaussian points.

To improve the utilization of the on-chip buffer, we merge adjacent MVoxels with low point
densities and process them together. Figure 13 illustrates our idea. For instance, given that the
four purple MVoxels (at the bottom right) are sparser than their neighboring MVoxels, we group
the them into one single, larger MVoxel M9. In our implementation, we balance the complexity
and efficiency and only groups of 2 × 2 × 2 MVoxels into a larger MVoxel if the combined size of
the point features within these eight MVoxels does not exceed the capacity of the on-chip buffer.
The remaining two operations, Feature Gathering and Feature Computation, are kept the same.

Coupled with variable-sized MVoxels, we use an octree structure to facilitate traversing and
processing these MVoxels. As Figure 13 illustrates, starting from the root node, the tree traversal
would first visit one of its subtree nodes and perform a depth-first search until a leaf node is
reached. A lead node represents an MVoxel. The possible rays would perform Gaussian point-ray
intersections to check which Gaussian points would intersect with the rays and store the results
in the RIT. This process would iterate until all MVoxels are visited.

Note that we group low-density MVoxels into larger MVoxels (eight subtree nodes into one
single node), resulting in an octree that is not perfectly balanced. However, this unbalanced
octree leads to more efficient use of the on-chip buffer. Figure 14 shows the point-per-MVoxel
distribution before and after merging. Post-merging, the average number of points per MVoxel
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Fig. 13. Modified Indexing (I) stage for unstructured representations

[12, 33, 74]. We merge adjacent low-density MVoxels for better on-

chip buffer utilization. An offline-built octree is used to help MVoxel

traversal.

Fig. 14. Distribution of points per

MVoxel before and after merging.

Post-merging octree improves on-

chip buffer utilization.

improves significantly from 7.2 to 172.8, indicating a more compact and memory-efficient
structure. Section 8.3 will further illustrate the performance benefits of the merged octree.

Accommodating Hierarchical Data Encodings. Some NeRF algorithms, instead of storing
voxel features directly, use hierarchical data structures such as hierarchical voxel grid [51], hash-
ing [55], and factorized tensor [11] to encode.

To accommodate our fully streaming dataflow with these hierarchical data structures, we first
partition 3D voxels at each level into MVoxel grids. For hash grid data structures, each hash entry
is an MVoxel rather than one single voxel feature so that DRAM streaming within one MVoxel can
be guaranteed. During Feature Gathering, we group all rays into small ray groups (see Figure 12)
and collect features level by level for a given ray group. Once we have traversed all levels, we can
then compile all the vertex features necessary for this ray group. When the 3D voxel dimensions
in the last several levels are too large, loading each MVoxel entirely would lead to low utilization
of voxels, wasting DRAM bandwidth. In that case, we revert back to the original (non-streaming)
dataflow. This reversion happens in, for instance, Instant-NGP [51] from level 5 (out of eight levels)
onward. As a result, about half of the DRAM traffic on Instant-NGP is non-streaming (which is
faithfully captured in evaluation).

5.2 Bank Conflict Free Interleaving

With fully streaming DRAM accesses, the inefficiency shifts to the on-chip SRAM, which expe-
riences frequent bank conflicts (see Figure 6), which arise when different rays access the vertex
features located at the same bank, leading to stalls in Feature Gathering (G). Critically, unlike con-
ventional DNNs where one can orchestrate data layout offline to avoid bank conflicts [34, 78], the
SRAM access pattern of ray samples is known only at the runtime, because the exact ray samples
depend on the runtime camera pose information.

The reason behind bank conflicts in Feature Gathering has to do with the way feature vectors
are laid out in SRAM; Figure 15(a) illustrates this point. State-of-the-art NeRF accelerators [36, 43]
store feature vectors in the SRAM using a feature-major order, where all the channels of a feature
vector are stored in the same SRAM bank. Assume in this example that we have four PEs, each
responsible for collecting the feature vector for a particular ray sample. PE1 and PE3 are responsible
for two ray samples, which require feature vectors 3 and 9, respectively. However, the two feature
vectors happen to reside in the same bank, causing a bank conflict.

To address this issue, we propose a channel-major layout, as illustrated in Figure 15(b), where
different channels of the same feature vector are spread across banks. For instance, bank 1 stores

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 80. Publication date: November 2024.



80:14 Y. Feng et al.

Fig. 15. A comparison between the original feature vector layout (a) and our data layout (b). The example

has four banks and four concurrent PEs. In (a), a bank conflict occurs when PE1 and PE3 (each collecting

features for a different ray sample) access two different features from bank 2. Our data layout (b) eliminates

bank conflicts by (1) spreading channels across banks and (2) having each PE collect a particular channel

across different ray samples.

Fig. 16. The SoC architecture. The uncolored portion is the baseline architecture, and we augment a standard

systolic array-based NPU with a GU and a vector unit, which are colored. The GU executes Feature Gathering

(G), and the MAC array executes Feature Computation (F ). The GPU executes the rest. The vector unit

supports element-wise updates such as ReLU, and exponential operation.

the first channel of all feature vectors within one MVoxel. In cases where the feature channel size
exceeds the bank size, the storing sequence restarts from bank 1.

During Feature Gathering, instead of parallelizing ray samples across PEs, we parallelize chan-
nels across PEs. Each PE is responsible for gathering one channel of all the ray samples rather
than gathering all channels of one individual ray sample. In other words, each PE is dedicated to
a specific bank. For instance, in Figure 15(b), the four PEs are collecting the four channels of the
same feature vector 3 (required by one ray sample).

6 Hardware Support

Architecture Overview. We extend a standard NPU architecture to support the two memory
optimizations. Figure 16 shows the SoC architecture, in which we augment the NPU with the
new GU and modify the vector unit to support exponential computation for 3DGS. The baseline
SoC consists of mainly a GPU and an NPU. The GU in the NPU executes Feather Gathering (G),
and the MAC array in the NPU executes Feature Computation (F ). The GPU executes the rest of
the computations—for example, Ray Indexing (I) and the first three steps in SpaRW for the target
frames. For 3DGS with unstructured representations, Sorting and Spherical-Harmonics-to-Color are
also executed on the GPU.

Vector Unit. To support Gaussian splatting operation within 3DGS algorithms, we augment
the vector unit to include exponential functionality. We introduce a convergence method to
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Fig. 17. The GU. Each RIT entry stores the information of a ray sample. For structured representations, each

entry has eight vertex IDs (VIDs) as well as the corresponding weights (W) for trilinear interpolation. For

unstructured representations, each entry contains a single ID of the intersected Gaussian point (PID). The

address generation logic uses the VID/PIDs to access the corresponding features from the MFT, which stores

the features of a MVoxel using the channel-major layout. The VFT has B individual SRAM arrays, each of

which has M ports, supporting retrieving features for M ray samples simultaneously. Trilinear interpolation

is supported by B × M number of reducers to calculate the final features for M ray samples. The weights

are broadcast to the reducers. A FIFO holds the feature results before writing to the global feature buffer in

Figure 16.

iteratively compute the exponential function [7]. Here, we focus on explaining the computation
of exponential values within the range of –1 to 1. For values beyond this interval, they still can
be computed using our extension by scaling down using powers of 2.

The key idea of this approach is to decompose the power x into a sequence {ln(1 + αi × 2−i )},
where αi ∈ {0, 1} and i ∈ [0,M). This can be done by comparing the residual value in Register
Rremain with the first element in Shift Register SRsub, and enabling their subtraction (see Figure 16).
Meanwhile, at each iteration, the first element of Shift Register SRsub cycles to the end, while the
subtraction result is written back into Rremain. The outcome from the comparator serves as a flag
to enable the multiplication between the value in Raccum and the first element in Shift Register
SRmul (containing {(1 + αi × 2−i ), i ∈ [0,M)}). Once the multiplication is done, the result is also
written back to register Raccum, and the first element in Shift Register SRmul would cycle to the end.
Following M cycles, the final exponential value would be obtained.

Gathering Unit. The GU architecture is detailed in Figure 17. This GU includes a dedicated
buffer for RIT and a double-buffered MVoxel Feature Table (MFT) for streaming MVoxels from
DRAM, as discussed in Section 5.1. The data layout for the MFT, optimized to eliminate bank
conflicts, is outlined in Section 5.2. After the RIT entries are loaded, the address generation logic in
the GU processes each entry to compute the necessary addresses for retrieving the corresponding
vertex or Gaussian point features from the MFT.

The MFT, free of bank conflicts, is configured as B individual SRAM arrays without a crossbar
to reduce area overhead. All channels of a feature vector are accessed simultaneously, enabling
a one-cycle read per vertex feature. For structured representations that require eight vertices per
voxel, this translates to eight cycles to access all features for a ray sample. Conversely, unstructured
representations only require a single cycle per entry. Each SRAM bank is designed with M ports,
allowing parallel reading and processing of M ray samples.

The GU uses B ×M reducers to perform trilinear interpolation to calculate feature vectors for
each ray sample. A skip-reduction flag enables bypassing trilinear interpolation for 3DGS. Once
processed, results are stored in the Feature FIFO and then transferred to the global feature buffer
in the NPU.

SoC Integration. Our hardware extensions are limited to the NPU without changing the GPU
hardware. Our design is agnostic to and thus integrates well with different GPU architectures—
for two reasons. First, our hardware augmentation (i.e., the GU) is limited to the NPU, whose
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communication with the GPU is dealt with by standard SoC-level interconnect (e.g., AXI) and thus
accommodates different GPUs. Second, the interaction between the NPU and the GPU is minimal
in our design: the GPU simply sends the RIT through the DMA to the NPU.

7 Experimental Setup

Hardware Details. The NPU is a systolic array based DNN accelerator, which has a 24× 24 MAC
array, where each MAC unit mimics the design of that in the TPU [31]. Each PE consists of two
16-bit input registers, a 16-bit fixed-point MAC unit with a 32-bit accumulator register, and simple
trivial control logic. The NPU also consists of a vector unit, which can parallelize element-wise
updates such as ReLU, exponential operations. The global feature buffer is configured to be double-
buffered with a size of 1.5 MB at a granularity of 32 KB. We reserve a dedicated 96 KB weight buffer
to store MLP weights.

In our GU design, the RIT is double-buffered, each sized at 6 KB. Depending on the NeRF algo-
rithms, 6 KB can store 128 entries (each accommodates eight vertices) for structured representation
or 1,536 Gaussian point indices for unstructured representation. The MFT is also double-buffered,
with 32 KB each (organized as B = 32 banks each with M = 2 ports), which can store a MVoxel
(8×8×8 points) with 32 channels. When the channel size of a feature is greater than 32, we partition
the features into segments along the channel direction and load each segment sequentially.

Experimental Methodology. We directly time the GPU execution as well as the kernel launch
on the mobile Volta GPU on NVIDIA’s Xavier SoC [53]. The GPU power is directly measured
using the built-in power sensing circuitry. We synthesize, place, and route the datapath of our
design using an EDA flow consisting of Synopsys and Cadence tools with the TSMC 16 nm FinFET
technology and scale the results to 12 nm using the DeepScaleTool [62, 67] so that the results can
be comparable with the mobile Volta GPU on NVIDIA’s Xavier SoC in 12 nm node [53].

The SRAMs are generated using the Arm Artisan memory compiler. Power is estimated using
Synopsys PrimeTimePX with annotated switching activities. The DRAM is modeled after Micron
16 Gb LPDDR3-1600 (four channels) according to its datasheet [46]. The DRAM energy is obtained
using Micron System Power Calculators [47]. On average, the energy ratio between a random
DRAM access and a streaming DRAM access is about 3:1, and the energy ratio between a random
DRAM access and an SRAM access is about 25:1. We build a cycle-level simulator of the archi-
tecture with the latency of each component parameterized from measurements (for GPU) and
post-synthesis results of the NPU design.

Area Overhead. Potamoi introduces minimal area overhead with GU augmentation. The major
overhead is from 44 K SRAM introduced from the RIT buffer and VFT buffer. The additional area
overhead (0.048 mm2) compared to the baseline NPU is less than 2.5%, in which the Potamoi-
specific portion is almost negligible compared to the entire SoC area, such as 350 mm2 for NVIDIA
Xavier [54] and 108 mm2 for Apple A15 [4]. We also removed the crossbar connections in VFT
buffer due to our interleaving access pattern in Feature Gathering. In comparison, a heavily banked
SRAM with a crossbar would introduce an additional 0.036 mm2 of area overhead.

NeRF Algorithms. Potamoi can accommodate arbitrary NeRF algorithms. To demonstrate
the flexibility of Potamoi, we evaluate three different NeRF algorithms: Instant-NGP [51], Di-
rectVoxGO [68], TensoRF [11], 3DGS [33], and Compact-3DGS [38], with varying model size-
computation tradeoffs (see Figure 2). We evaluate algorithm quality on PSNR.

Datasets. We use the Synthetic-NeRF dataset [48], which includes eight different synthetic
scenes, for our evaluations. Additionally, to show a broader applicability of Potamoi, we use two
real-world datasets, Unbounded-360 [6] (Bonsai trace) and Tanks and Temples [35] (Ignatius trace),
to assess SpaRW under real-world conditions. Although real-world datasets lack corresponding
scene meshes, generating meshes from real-world images is a well-mature field (photogrammetry).
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Fig. 18. Image quality comparison. Potamoi-6 and Potamoi-16 use a warping window size (i.e., the number

of target frames a reference frame is used for) of 6 and 16, respectively.

For mesh generation, we use Agisoft Metashape [2], a well-established photogrammetry soft-
ware. To avoid background discrepancies, we initially segment the backgrounds from all images
and focus on generating meshes solely for the foreground scenes. We show that Potamoi achieves
high accuracy even with these imperfect meshes in Section 8.1.

Baseline. Our baseline is the SoC in Figure 16 without the GU. It executes Ray Indexing (I)
and Feature Gathering (G) on the GPU and Feature Computation (F ) on the NPU for all frames.

Variants. We evaluate three variants of Potamoi to decouple the contribution proposed in our
article:

• SpaRW: Only performs sparse radiance warping with the same hardware configuration as
the baseline.

• SpaRW + FS: Same as SpaRW except it includes the fully streaming NeRF rendering.
• Potamoi: The full version of Potamoi, which includes sparse radiance warping, fully stream-

ing NeRF rendering, and bank conflict free interleaving (with GU support).

Application Scenarios. We evaluate two application scenarios that commonly exist in AR/VR
applications:

• Local rendering: All the computations are executed on the stand-alone device with the hard-
ware described previously.

• Remote rendering: Many VR devices, such as the Oculus Quest series, can be tethered wire-
lessly to a remote machine (e.g., a nearby workstation or even the cloud) to accelerate ren-
dering, whereas the local device is used for display and lightweight processing. How to
effectively leverage the remote rendering paradigm is an active area of research, and our eval-
uation aims to demonstrate a particular use of remote rendering by offloading the reference
frame rendering in our SpaRW algorithm to a remote 2080Ti GPU via a wireless connection.
The wireless communication energy is modeled as 100 nJ/B with a speed of 10 MB/s [44].

8 Evaluation

We first demonstrate that Potamoi achieves quality levels comparable to the baseline (Section 8.1).
Next, we discuss the effectiveness of Potamoi on real-world datasets (Section 8.2.) We then show
the speedup and energy reduction compared to the baseline hardware incorporating a dedicated
DNN accelerator (Section 8.3). Finally, we show that Potamoi achieves better speedups compared
to prior NeRF accelerators (Section 8.4).

8.1 Rendering Quality

Figure 18 shows the rendering quality of applying our SpaRW algorithm to NeRF algorithms on
both the Synthetic-NeRF dataset (see Figure 18(a)) and real-world scenes (see Figure 18(b)). We
use a warping window to denote the number of target frames that reuse a single reference frame.
We consider two warping window sizes: 6 and 16. In addition to the baseline algorithms, we also
compare against two variants: DS-2 and Temp-16. DS-2 first downsamples the frame by 2 for NeRF
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Fig. 19. The accuracy sen-

sitivity to window size be-

tween Potamoi and the

warping-based method.

Fig. 20. Speedup and

PSNR of Potamoi-16

under different warping

thresholds ϕ on the 1

FPS sequence.

Fig. 21. PSNR compari-

son on the Tanks and

Temples dataset in sparse

sequences.

Fig. 22. PSNR compari-

son on the Tanks and

Temples dataset in dense

sequences.

rendering and then upsamples it to the original resolution via bilinear interpolation. Temp-16 is a
method that uses a previously rendered frame as a reference frame with a warping window of 16
frames.

On both datasets, Potamoi-6 retains an average PSNR drop within 1.0 dB compared to the origi-
nal algorithms. Despite Potamoi-16 dropping the average quality by 1.4 dB, it still has better quality
compared against DS-2 and Temp-16 on the Synthetic-NeRF dataset. Temp-16 is the worst because
it warps from previous frames and accumulates errors. The quality of Potamoi-6 is only slightly
better than DS-2 on the real-world datasets, which use a low temporal resolution (1 FPS), for which
the radiance approximation does not hold well. We will further discuss this in Section 8.2.

8.2 Robustness

Figure 19 shows the comparison between two methods: reference-based warping and temporal-

based warping. Here, we use the Synthetic-NeRF dataset and evaluate the quality under different
warping window sizes using Instant-NGP [51]. As shown in Figure 19, temporal-based warping
drops its visual quality rapidly as the warping window size increases. At a warping window of
6, the quality of temporal-based warping is already lower than DS-2 (37.60 dB). In contrast, refer-
ence frame based warping can still maintain competitive visual quality even with a large warping
window size of 31.

We use the Ignatius scene in the Tanks and Temples dataset to discuss the effectiveness and
limitations of SpaRW on real-world scenes. Figure 21 shows the results. Both Potamoi-6 and
Potamoi-16 have lower quality compared to DS-2. This is because the temporal resolution of the
scene is extremely low (1 FPS). Thus, consecutive frames have large differences in camera poses
(i.e., θ in Figure 9 is too large), so the radiance approximation does not hold well for a non-diffuse
surface.

We hasten to stress that the lower quality of SpaRW here is not fundamental to the algorithm
but an artifact of the low-FPS dataset. To evaluate Potamoi in scenarios more representative of
real-time VR rendering, we use the raw video sequence from the dataset captured at 30 FPS. The
results are shown in Figure 22. In this more realistic scenario, Potamoi-16 has little quality loss
over the baseline and has a similar quality compared to DS-2 but is about 4× faster.

While real-time VR rendering, which we target, usually has a high temporal resolution (>30
FPS), in scenarios where a dataset has low temporal resolution, our warping heuristics in
Section 4.3 can be used to mitigate the rendering quality loss. Figure 20 shows the speedup and
PSNR of Potamoi-16 across different warping thresholds on the challenging 1 FPS sequence of
Ignatius. As ϕ reduces toward the left, the quality increases, since fewer pixels are warped and
more pixels are NeRF rendered, which also means that the performance reduces. At a threshold
of 4◦, SpaRW has a quality drop within 0.1 dB and a speedup of 4.3×.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 80. Publication date: November 2024.



Potamoi: Accelerating Neural Rendering via a Unified Streaming Architecture 80:19

Fig. 23. End-to-end speedup and normalized energy of our variants over the baseline with a GPU and an

NPU. We evaluate two application scenarios: local rendering and remote rendering. All values are normalized

to the baseline.

8.3 Performance and Energy

The speedup and energy reduction are even higher when the baseline SoC uses a dedicated NPU
to execute the MLPs. To demonstrate that, we evaluate two different application scenarios: local
rendering vs. remote rendering, both of which are common in VR. Unless stated otherwise, we use
a warping window of 16 for our evaluation.

Local Rendering. Figure 23(c) shows the speedup and normalized energy comparison in a local
rendering scenario. All results are normalized with the baseline. On average, SpaRW achieves 8.1×
speedup and 8.1× energy saving on the same hardware configuration as the baseline. With the
additional assistance from fully streaming NeRF rendering, SpaRW + FS achieves an additional
1.1× speedup and 2.1× energy saving under the same hardware configuration.

Two factors help SpaRW + FS improve upon the baseline. First, the SpaRW algorithm reduces
the amount of full-frame NeRF computation. Second, fully streaming NeRF rendering reduces re-
dundant DRAM accesses. With GU hardware support, Potamoi further boosts the speedup and
energy saving to 53.1× and 67.7×, respectively. For instance, Potamoi achieves only 9.33 FPS on
Instant-NGP, whereas Instant-NGP achieves merely 0.20 FPS on the baseline hardware. However,
3DGS achieves more than 1,000 FPS since the baseline 3DGS is already fast.

Remote Rendering. One factor that prevents Potamoi from achieving higher speedup is re-
source contention: even though algorithmically reference frame and target frame rendering can
be overlapped, they compete for the same NPU and GPU resources. With additional resources on
a remote machine, Potamoi further boosts the performance.

Figure 23(d) shows the speedup and energy comparison. In the baseline, the entire NeRF render-
ing executes on the remote GPU. In our system, we map the reference frame NeRF rendering to
the remote GPU and render the target frames locally. In both cases, the remote GPU and the local
device communicate the pixel data of the rendered frames.

SpaRW achieves a 2.1× speedup against the baseline, whereas SpaRW + FS achieves a 2.5×
speedup by applying fully streaming NeRF rendering. Note that for 3DGS and Compact-3DGS,
SpaRW and SpaRW + FS slow down the overall performance due to the computational gap be-
tween the remote GPU and local SoC. With GU hardware support, Potamoi further improves the
speedup to 7.5×. Even for 3DGS and Compact-3DGS, Potamoi can achieve 6.0× and 7.1× speedup.
In all cases, data communication between the remote GPU and the local device is not a bottleneck:
the communication latency is 0.02% of the average frame latency in Potamoi.

Notably, the baseline in this scenario consumes lower energy than all three variants of Potamoi.
This is because when all the computations are offloaded to the remote GPU in the baseline, the
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Fig. 24. Speedup of Fea-

ture Gathering.

Fig. 25. Memory energy

saving contribution.

Fig. 26. Energy reduction

from merged octree data

structure.

Fig. 27. Performance

comparison against prior

works.

main energy consumption of the local device is wireless communication. Transferring one frame
consumes almost 3.0× lower energy than rendering a frame in Potamoi.

Feature Gathering (G). Figure 24 demonstrates the speedup and energy reduction brought by
GU compared to the GPU execution. Overall, our GU achieves 64.1× speedup while contributing
to 99.9% of the energy reduction. This is attributed not only to our hardware acceleration of the
Gather stage but also to our data placement strategy that eliminates bank conflicts. For instance,
Instant-NGP uses hash tables, which causes severe SRAM bank conflicts. Potamoi eliminates the
irregular accesses entirely. Coupled with the GU, we achieve a 182.4× speedup on Instant-NGP.

Memory Saving Contribution. Not only does Potamoi eliminate non-streaming DRAM ac-
cess, it also reduces the overall DRAM traffic. Figure 25 plots the percentage of DRAM energy
reduction attributed to DRAM traffic reduction and converting random DRAM accesses to stream-
ing accesses. On average, 84.5% of energy reduction is from DRAM traffic reduction. This shows
that by grouping/loading a cluster of voxels together, Potamoi effectively improves the reuse of
each MVoxel, thus reducing the overall DRAM access. The rest of the energy reduction (15.5%)
is from converting non-streaming DRAM access to streaming DRAM access. Although reducing
bank conflicts does not reduce overall energy consumption, it does improve the performance of
Feature Gathering (see Figure 24).

Merged Octree. Figure 26 shows the speedup and energy savings achieved by merging the
octree for unstructured representations as discussed in Section 5.1. Merging low-density MVoxels
achieves speedup on Feature Gathering and Feature Computation stages by 1.3× and 3.5×,
respectively. This shows that merged octree improves the resource utilization of both the GU and
systolic array. Regarding energy efficiency, merging octree results in a 70.1% energy reduction of
Feature Computation, which is dominated by the computation of the systolic array. Conversely, a
mere 1% of energy is saved in Feature Gathering, which is largely driven by memory operations.
Note that octree merging is performed offline, thus incurring no runtime overhead. The average
memory overhead of octree is less than 200 KB, which is much smaller compared to the overall
NeRF model size.

8.4 Comparison with Prior Works

We also compare against two prior NeRF accelerators: NeuRex [36] and NGPC [49]. Notably, both
of these accelerators are tailored to one particular NeRF algorithm, Instant-NGP, whereas Potamoi
generally applies to any NeRF algorithms.

Figure 27 compares Potamoi with the two accelerators on Instant-NGP. All values are normal-
ized to the GPU baseline. We use the data reported in the NeuRex paper1 and implement the NGPC

1The original NeuRex paper compares against Xavier NX (21 TOPS, 384 core), and our GPU baseline is Xavier (32 TOPS,

512 core). To convert the result to the Xavier baseline, we use the actual execution time of Instant-NGP on Xavier NX and

NeuRex’s speedup numbers reported in the original paper to calculate the absolute execution time of NeuRex. Based on

that, we calculate the speedup of NeuRex over Xavier used in Figure 27.
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architecture based on the paper’s description. For a fair comparison, we configure Potamoi to use
the same amount of PEs (24 × 24) as NGPC; NeuRex has a higher PE count (32 × 32) as reported
in the paper. Our accelerator uses a 32 KB feature buffer, and the two baseline accelerators have
larger on-chip feature buffers as described in their respective papers (i.e., 16 MB for NGPC and 64
KB for NeuRex).

Overall, Potamoi without the SpaRW algorithm demonstrates a 2.0× speedup over NeuRex.
The speedup against NeuRex is attributed to hardware augmentation of GU in Potamoi, which
eliminates the SRAM bank conflicts in Feature Gathering. By contrast, NGPC design inherently
avoids SRAM bank conflicts (because they use one bank for all the feature vectors in one Instant-
NGP level). Potamoi without SpaRW achieves a similar speed. However, NGPC requires a 16 MB
on-chip buffer dedicated to storing feature encodings, which is unrealistic for a mobile SoC. In
contrast, with a fully streaming rendering algorithm, our on-chip SRAM size is only 32 KB. With
our SpaRW algorithm, Potamoi boosts the speedup to 16.4× and 8.2× against NeuRex and NGPC,
respectively.

9 Related Work

NeRF Acceleration. NeRF rendering has drawn considerable attention in the past 2 years. Recent
works have proposed several accelerators for NeRF algorithms [18, 22, 27, 36, 42, 43, 49, 61]. How-
ever, prior designs are tailored to individual NeRF algorithms—one accelerator for one algorithm.
For example, Instant-3D [43] and NeuRex [36] accelerate the training and inference of Instant-
NGP [51], respectively. NGPC [49] accelerates a range of neural graphic algorithms with similar
hierarchical feature encodings. ICARUS [61] and RT-NeRF [42], however, design specialized archi-
tecture to speed up NeRF [48] and TensoRF [11], respectively. Meanwhile, Gen-NeRF [22] accel-
erates IBRNet [73] for novel view synthesis. Despite that recently Cicero [18] and GSCore [37]
proposed acceleration frameworks for structured and unstructured representations, Potamoi pro-
poses a fully streaming computing framework that is generally applicable to a range of existing
NeRF algorithms with minimal hardware augmentation.

Memory Optimizations in Rendering. Our idea of full-streaming DRAM accesses is inspired
by ray reordering techniques in conventional ray tracing that increase memory access locality by
grouping nearby rays [3, 8, 25, 58, 64].

Our approach has three main differences. First, we change the basic unit of reordering from rays
to ray samples to accommodate the nature of NeRF. Second, existing techniques usually manipulate
rays dynamically, since (secondary) rays are spawned at runtime, which complicates the hardware
design (e.g., dynamic identification of nearby rays, dynamic buffer management). In contrast, we
exploit the nature of NeRF where all ray samples are known statically and reorder ray samples only
once at the beginning. Third, ray reordering in ray tracing usually can only afford local reordering
because rays are dynamically spawned, whereas we reorder ray samples globally to guarantee fully
streaming DRAM accesses.

Dataflow Framework. Dataflow optimization for DNN algorithms is a well-established re-
search area. Various techniques have been proposed to improve computational efficiency and re-
duce off-chip data traffic via reordering, tiling, and binding [13, 59, 60]. Recently, studies have
aimed to fuse DNN operations to enhance data reusability and decrease data traffic across DNN
layers [76, 77]. However, these studies focus on the dataflow scheduling of regular computations
(e.g., GEMM), where optimal dataflow scheduling can be determined offline due to static data access
patterns. Although there are approaches designed for irregular computations [16, 17, 19, 45, 72],
they are not suitable for NeRFs.

Potamoi addresses the unique challenges of NeRF rendering, where data access patterns can
only be determined prior to rendering. By shifting from the conventional pixel-centric rendering
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to memory-centric rendering, Potamoi proposes a streaming framework that supports coarse-
grained streaming and operation-level pipelining, effectively leveraging the unique computational
characteristics of NeRF algorithms.

Real-Time VR Rendering. To achieve real-time VR rendering, prior works have leaned on
image-based rendering or remote rendering [9, 29, 39, 50, 70]. Some systems directly stream ren-
dered videos to clients, but they often suffer from bandwidth limits and require efficient video
encoding [52]. Other works transmit one frame that can be reused to render multiple viewpoints,
but they often require complex encoding methods to store texture and geometric information to
address disocclusions [29, 50]. By leveraging the computation characteristics of NeRF, Potamoi
proposes a straightforward yet effective approach to resolve disocclusions, achieving photorealis-
tic visual quality.

10 Conclusion

Potamoi presents an interesting idea, radiance warping, to reduce the overall pixel rendering by
NeRF. This heuristic is built upon the assumption that either the object surface is non-diffuse or the
angular disparity between two corresponding pairs of warping pixels is sufficiently small. A more
principal future direction is to use a lightweight DNN model to learn the material properties [5,
23], such as bidirectional reflectance distribution function and bidirectional subsurface scattering
function [57], to approximate the warped pixel values instead.

Nevertheless, we reduced more than 95% of the MLP computation in NeRF by warping radiances
computed in previous frames with less than 1 dB PSNR loss. We also showed two memory opti-
mizations that transform the computation orders in NeRF and address the issues in both DRAM
and SRAM accessing. Collectively, we demonstrated more than an order of magnitude speedup
and energy savings over a mobile Volta GPU.
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