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Abstract

We address privacy issues in applications where images
captured by an edge device (camera) are sent to the cloud
for inference on utility tasks such as classification. Sending
raw images to the cloud exposes them to data sniffing at-
tacks and misuse by untrusted third-party service providers
beyond the user’s intended tasks. We propose an encoding
scheme that not only evades direct visual inspection to the
images or image reconstruction, but also prevents sensitive
information from being ascertained. Unlike commonly used
adversarial learning approaches, the proposed method is
two-fold: first, it uses a diffractive optical neural network to
spatially separate features corresponding to different tasks
on the sensor plane in the optical domain. Then only the
pixels corresponding to the utility task region are read. This
encoding ensures that private features are never digitally
stored on the edge device, thereby preventing privacy leak-
age. The proposed method successfully reduces the privacy
retrieval in binary tasks with minimal accuracy loss (∼ 2%)
of the utility task, while reducing private task accuracy by
∼ 35% and defending against reconstruction attacks with
SSIM score of 0.43.

1. Introduction
We consider modern edge Computer Vision (CV) sys-

tems that are composed of a camera to capture images
and send them to a cloud host to perform inference on
deep learning models. However, these raw images often
contain information beyond the user-authorized tasks (util-
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ity tasks), potentially exposing sensitive data that can be
misused by untrusted third-party service providers (privacy
tasks) [16, 35], leading to information leakage. Current
privacy-focused commercial products use homomorphic en-
cryption to secure the data [7], but it incurs substantial hard-
ware overhead and slow computation speeds [9]. Addition-
ally, storing captured images in the camera’s digital mem-
ory makes them vulnerable to attacks [1, 20, 39].

As a solution, we propose PrivateEye, an optical system
designed to encode images during acquisition (in the optical
domain) to enhance visual privacy and prevent information
leakage throughout the CV pipeline. PrivateEye features
deliberate algorithm-hardware co-design. Algorithmically,
the encoder is co-trained with downstream CV models to
learn task-specific, privacy-preserving encodings. This en-
sures the encoded image contains only the features neces-
sary for the intended utility task, while preventing a mali-
cious third-party cloud host from recovering private infor-
mation. At the hardware level, using an optical neural net-
work [36, 45] as the encoder and an image sensor [6] as the
sensing device, the proposed method prevents information
leakage from the digital memory and improves efficiency by
significantly reducing the amount of data sent to the cloud.

Fig. 1 provides an overview of our PrivateEye system,
which comprises an edge device (client) and a cloud host
(service provider). The overall goal is to learn an encoder
at the edge that preserves features for utility tasks while in-
hibiting features related to private tasks for a given input
data distribution. The encoding process involves two steps:
feature separation and masking. During feature separation,
we use a Diffractive Optical Neural Network (DONN) to
spatially separate the features of the input image on the fo-
cal plane. For masking, we utilize the image sensor’s native
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Figure 1. Conceptual overview of our pipeline: A 3D printable diffractive optical neural network is used to separate features belonging to
different tasks (e.g., smiling and gender) and push them to the corners of the focal plane. Based on the user’s choice of utility and private
tasks, the image sensor masks out the corresponding pixels during image capture. The masked encodings are then sent to a third-party
machine learning service provider for inference. A malicious attacker cannot recover private attributes from the encoded images.

pixel readout circuits to selectively read only a portion of
the pixels while discarding the rest. This masking process
retains the information necessary for the utility task while
blocking information related to the privacy task. The key
contributions of this paper are:

• Propose a privacy-preserving encoder at the optical-
sensor level that trains a DONN to achieve spatial
separation in the optical domain and masks privacy-
dependent features during image readout.

• Design an anchor loss that separates task-specific fea-
tures in the encoded image by pushing Class Activa-
tion Maps (CAMs) towards distinct spatial locations.

• Evaluate the privacy-utility trade-offs by testing the en-
coded images on various classifiers, ensuring that with
aggressive masking (where 90% to 99% pixels are dis-
carded), the private task accuracy is not recoverable
while the utility task accuracy remains high.

• Demonstrate the DONN enables a near zero-energy
privacy preservation encoding while providing great
flexibility in the selection of privacy and utility tasks.

2. Background and Related Works

2.1. Imaging Pipeline for Vision Applications

Modern vision applications such as facial recognition,
autonomous vehicle sign detection, and smart security sys-
tems depend on images captured through imaging pro-
cesses. Fig. 1 illustrates how our imaging systems pro-
vide data for downstream vision tasks. In our setup, the
imaging process involves optics and sensors: light from the
scene undergoes optical processing before reaching the im-
age sensor plane, where it is digitized for further processing.

Our work leverages optical computation and selective
sensor readout to remove sensitive information early in the
imaging pipeline. This prevents privacy leaks in the digi-
tal domain while also reducing computational overhead. To
achieve this, we introduce a learnable DONN placed before
the sensor, which is co-trained with the selection strategy
and the CV models.

2.2. Privacy Preservation

Digital Privacy Preservation with Neural Networks.
Several privacy-enhancing techniques have been proposed
in neural networks including: obfuscation [37, 49], di-
mensionality reduction [28], and noise injection frame-
works to enhance privacy when using third-party cloud ser-
vices [15, 43]. Adversarial learning [29, 47, 48] and Gen-
erative Adversarial Models (GANs) have also been applied
in this field. AdvPrivacy [29] suppresses private attributes
while enhancing others, aiming to limit sensitive data recov-
ery during training. DeepPrivacy [14, 25] masks sensitive
facial features and generates new faces, while Cloak [26]
removes non-task-specific features. However, these meth-
ods operate post-capture, making them vulnerable to pre-
encoding attacks. In contrast, our method applies privacy-
preserving measures before the image is captured, offer-
ing stronger security. Our approach is closely aligned with
Adaptive Noise Injection (ANI) [15], which preserves pri-
vacy by selectively masking and adding noise to input data.

Privacy Preservation in Optical Domain. With the rapid
advancement of optical computing [24, 36, 45, 50], privacy-
preserving techniques are increasingly applied at the optical
level to enhance security while reducing digital overhead.
Bai et al. [3] demonstrated that learned diffractive lenses
can project features from different data classes to distinct



imaging locations, enabling selective capture of target class
images while erasing others. However, this method has
only been tested on simple datasets (e.g., MNIST/Fashion-
MNIST) likely due to the limitations of Optical Neural Net-
works (ONNs) in performing complex tasks, as they primar-
ily perform linear transformations.

Building on previous work, lenses and phase masks have
been designed for privacy in tasks like human action recog-
nition, depth estimation, pose estimation, and facial de-
identification [12, 13, 21, 38]. These often use adversarial
training to balance utility and privacy [34]; however, these
methods are task-specific, requiring retraining or lens re-
configuration [18] for different tasks or trade-offs. In con-
trast, our approach co-optimizes an ONN and sensor read-
out, enabling dynamic, post-fabrication control over task
selection and utility-privacy trade-offs without reconfigura-
tion.

2.3. Optical Computation

ONNs, which manipulate light waves instead of elec-
trical signals, have attracted attention for their high-speed,
low-energy computations. A typical ONN employs a 4-f
system with two convex lenses to perform optical convolu-
tions through forward and inverse Fourier transforms [10].
By modulating the Fourier plane in both magnitude and
phase, ONNs can effectively execute convolutions. Meta-
surfaces are commonly used to implement ONNs by con-
trolling the physical parameters and orientations that de-
fine the Point Spread Function (PSF) of output light waves.
This enables ONNs to perform downstream tasks like image
classification [4, 30, 52] on datasets like MNIST.

DONNs are one of the most popular ONNs, which utilize
diffraction to perform optical computations. Each diffrac-
tion layer embeds a phase modulator, where trainable phase
modulation is applied to the light signal. The forward pro-
cess of light propagation between layers is typically mod-
eled using Fresnel, Rayleigh-Sommerfield, or Fraunhofer
approximations iteratively [17]. DONN architectures sup-
port single-wavelength input, color channels management
with beam splitters, and optical skip connections. However,
unlike digital neural networks, DONNs lack non-linearities,
which limits their ability to tackle complex tasks.

To make DONNs more accessible to deep learning
researchers, several frameworks have been developed to
simulate optical forward and backward models within
deep learning environments. These include Mathworks
BeamLab [42], Meta-Imager [51], LightPipes [41], and
Lightridge [17]. Lightridge, implemented in PyTorch, sim-
ulates diffractive optics with differentiability across mul-
tiple optical layers, similar to convolutions in neural net-
works. In our work, we use Lightridge as the optics opti-
mization framework.

3. Methodology
3.1. Use Scenario and Threat Model

We target a system where an image sensor interacts with
a third-party service provider (cloud host). In this system,
an image x captured by the image sensor is sent to the host
for prediction on certain tasks. During image capture, x
is encoded to x′ through the DONN and masking for the
specific utility task. The encoded image x′ is then sent to the
host. Since our method performs pre-capture visual privacy,
x is never stored beyond the optical layers.

We consider a scenario involving a attacker (eg. mali-
cious service provider) who has gained access to the x′. x′

received by the attacker has the same dimensions as x but
with 90% to 99% of the values masked (filled with zeros).
The attacker has access to the utility classifiers and can train
their own classifiers to try to ascertain private attributes in
the encoded images. We assume they have the same access
to public datasets as we do and can use them to train a pri-
vate classifier after querying our encoder.

3.2. Problem Setup

The core idea of our approach is to spatially separate
task-specific features in the optical domain, enabling the use
of task-specific masks to filter utility and private informa-
tion. To illustrate our method, we consider a scenario with
two tasks, T1 and T2 (T1, T2 ∈ T), where T is the set of all
possible tasks. Both T1 and T2 perform binary classifica-
tions with T1 performing smile detection and T2 detecting
gender as seen in Fig. 1. PrivateEye supports scenarios with
multiple tasks and various downstream CV models, which
we analyze in Sec. 4,

Initially, we train the feature separation to ensure it effec-
tively propagates features relevant to both tasks, enabling
high classification accuracy for each. Once the encoder
is trained, we apply a mask to retain features relevant to
T1 while disregarding those related to T2, based on user-
defined settings that designate T1 as the utility task and T2
as the private task, or vice versa.

Our goal is to achieve high accuracy for T1 and low ac-
curacy for T2. To evaluate privacy preservation, the attacker
trains a classifier with our learned, frozen encoder on pub-
lic datasets. Our encoder is considered to be private if the
attacker cannot substantially recover the accuracy for T2.
Another aspect of our approach is its flexibility: we can
select the private/utility task after training the encoder by
modifying the mask pattern, which can be easily realized
by programming the image sensor’s readout sequence.

3.3. Training the Encoder

We begin by training binary classifiers for tasks T1 and
T2 without any encoding. Subsequently, we train our en-
coder to spatially separate task-specific features. To achieve



this, we exploit Class Activation Maps (CAMs) [33, 53] to
identify key regions on the image.

3.3.1 Class Activation Maps and Anchoring

In our proposed solution, we spatially allocate features cor-
responding to T1 to the top-left and T2 to the bottom-right
of the encoded space. This involves: (1) identifying task-
specific features using CAMs and (2) guiding these features
to specific locations through feature separation. CAMs are
effective in identifying regions in an image that are most
correlated to a classifier’s output. We adopt the CAM no-
tation directly from Grad-CAM [33], which uses the gradi-
ent information flowing into the last convolutional layer of a
Convolutional Neural Network (CNN) to assign importance
values corresponding to a particular decision.

To calculate the CAM Lc
Grad−CAM ∈ Ru×v of height u

and width v for a class c, the gradient of the score yc (pre-
softmax) with the feature map activations Ak ∈ Rk×u×v of
the convolutional layer is first computed, resulting in δyc

δAk .
These gradients are global-average-pooled across their spa-
tial dimensions to obtain neuron importance αc

k:

αc
k =

1

Z

∑
i

∑
j

δyc

δAk
ij

(1)

In Eq. (1), αc
k captures the importance of feature map

k for class c. The weighted combination of the activation
maps, followed by ReLU [27], is then performed to get
CAM:

Lc
CAM = ReLU(

∑
k

αkA
k) (2)

ReLU is used to preserve only the positively correlated fea-
tures. The produced CAM typically ranges from 4 × 4 to
16 × 16 for images of size 32 and 128, respectively, on
ResNet-like models [11]. The CAM is usually upsampled to
the image size and overlaid on the image to form a heatmap.

For our problem, an input image x is processed through
the encoder fe to obtain an encoded image x′. We have two
classifiers for T1 and T2, taking x′ as input and returning
logits y1, y2 and activation maps A1, A2 for each task:

y1, A1 = fT1(x
′), y2, A2 = fT2(x

′) (3)

We first calculate the CAMs using Eq. (1) and Eq. (2) and
get CAMs for T1:

LCAM,T1 = |
∑
k

αkA
k
T1| (4)

Since we care about the entire binary task and not just a par-
ticular class, we take the absolute value of the CAM rather
than ReLU. Similarly, we calculate LCAM,T2. Note that for
multi-class cases, we use the mean CAM across all classes.

Next, we define a weighted Euclidean distance between
the calculated CAMs and specific “anchor” points P ∈ R2

located at the corners of the focal plane (e.g., P = (0, 1)
corresponds to top-right of the CAM). Now we maximize
the separation between the two tasks, which we model using
an anchor loss:

lossanchor(LCAM , P ) =
u∑
i

v∑
j

LCAM,ij

√
(i− P0)2 + (j − P1)2

(5)

We normalize LCAM before using it in the loss function
to prevent the optimizer from simply reducing the magni-
tude of the CAMs as a shortcut to minimize the overall loss.
For example, we use this anchor loss to pull T1 and T2
features captured by pushing the CAMs to the top-left and
bottom-right corners of the image respectively. To do so,
we set PT1 = (0, 0) for the top-left and PT2 = (1, 1) to the
bottom-right as indicated in Eq. (6):

Lanchor,T1 = lossanchor(LCAM,T1, PT1)

Lanchor,T2 = lossanchor(LCAM,T2, PT2)

Lanchor = Lanchor,T1 + Lanchor,T2

(6)

The general formulation for multiple N tasks is Lanchor =∑N
i Lanchor,Ti

for various anchors P .

3.3.2 Learning Regime

Since we have to optimize multiple networks (the encoder
and N classifiers), we first train the classifiers without any
encoding so that they generate high quality CAMs. This
also provides us the baseline accuracy. Then we freeze them
and train the encoder using the objective function that com-
bines the classifier loss and anchor loss:

loss =

N∑
i

H(yi, ỹi) + λLanchor (7)

where (yi, ỹi) is the cross-entropy loss for task i and λ is a
hyperparameter to control the strength of the anchor loss.

3.3.3 Masking

Since the DONN is a physical component, once it is trained
for a specific subset of tasks, it is fixed. However, we can
program the mask onto an image sensor by selectively cap-
turing only the unmasked pixels. Since we push features to
the corners of the encoded space, the mask should reflect
this. Therefore, we use a (rotated) upper diagonal 2D ma-
trix mask, allowing values above the principal axis to pass
through while blocking the rest. This has two advantages:
1) Trade-off Control: we can adjust the trade-off between
the private and utility tasks by simply moving the principal
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Figure 2. Different mask orientations and ratios control the
privacy-utility trade-offs between tasks.

diagonal; 2) Energy Efficiency: by masking out a large por-
tion of the encoded image, we capture significantly fewer
pixels, directly improving the image sensor’s energy effi-
ciency. We generate and use different corner masks like
Mtop−left and Mbottom−right as shown in Figure 2 where
masking ratios control the utility/privacy trade-off. Later, in
Sec 4.3.4 we explore learned masking strategies.

3.4. Challenges with DONN

We test our hypothesis on a more traditional pixel-to-
pixel model (e.g., UNet [31]) to verify that our objective
function and training method produce separable CAMs. Ta-
ble 1 compares the parameter sizes of various UNet and
DONN architecture variants. The parameter size of UNet
remains constant with input dimensions since UNet is a con-
volutional neural network. We control the size of UNet by
adjusting the number of filters in each convolutional layer.

For the DONN, the table shows three variants with 10, 5,
and 3 layers, respectively. The size of the diffractive layers
increases with the image resolution, leading to different per-
formances of the DONN architectures across various image
scales. In Sec. 4, we experiment with UNet-tiny, and the
DONN variants, excluding UNet-standard, as its parameter
spaces exceed what the DONN models can replicate. Addi-
tionally, using too many DONN layers would be physically
impractical. It is important to note that despite the DONN
and UNet-tiny having similar parameter numbers, we do not
expect the DONN to match the performance of UNet-tiny
due to significantly different architectures, such as the lack
of batch/layer normalization, multiple convolutional filters
and non-linearities. Nonetheless, we demonstrate that we
can achieve a trade-off between utility and private tasks, al-
beit with some performance degradation compared to UNet.

In practice, we observe that training the DONN directly
with the task separation objective leads to poor conver-
gence. To address this issue, we employ a student-teacher
distillation approach where a UNet-tiny network serves as
the teacher for a DONN network. To further alleviate the
burden of replicating the entire UNet encoding function, we
mask out part of the encoded features of both the student

Table 1. Parameter size of various encoders. For UNet-tiny, we
decrease the number of convolutional filters by a factor of 8.

Encoder #parameters (M)
input

32×32×3
input

128×128×3
input

200×200×3
UNet-standard 31.04 31.04 31.04

UNet-tiny 0.49 0.49 0.49
DONN-10 0.03 0.54 1.32
DONN-5 0.02 0.29 0.72
DONN-3 0.01 0.20 0.48

and the teacher, as shown in Eq. (8):

M = Mtop−left +Mbottom−right

loss = MSE(x′
student ×M,x′

teacher ×M)
(8)

This allows the DONN to focus only on learning the un-
masked corner regions.

4. Experimental Evaluation
4.1. Datasets, Metrics, and Models

We primarily use the CelebA dataset [19] consisting of
human faces and 40 labelled attributes of which we use a
subset of. Similar to ANI [15], we focus on the smiling
and gender tasks. We train models on two image resolu-
tions to ensure the scalability of our model: 32 × 32 and
128 × 128. We use accuracy to compare the performance
of T1 and T2. To better gauge the performance of vari-
ous encoders by their accuracies at different masking ra-
tios, we introduce three metrics to quantify our results more
precisely: 1) ∆util: utility accuracy loss due to encoding,
characterized by mean((accbase − accutil) ∗ ratiomask);
2) ∆priv: attacker’s ability to recover private information,
characterized by mean((accpriv−accrand)∗ratiomask); 3)
∆trade−off : quantifies the privacy-utility trade-off, given
by ∆util + β∆priv where β controls the importance given
to privacy.

Each task uses a separate classifier, but they share a sin-
gle encoder. For the classifiers, we use ResNet18 during
training. During validation (i.e., when mimicking the role
of the attacker), we experiment with various models includ-
ing MLP-Mixer [40], ResNet [11], and ViT [5]. As de-
scribed in Sec. 3.4, we use UNet-tiny as a digitally realized
architecture and DONN, which is a diffractive neural net-
work from the Lightridge framework for the encoders. We
also explore and evaluate advanced architectures using like
residual connections.

4.2. Training details

We first train each classifier for its respective task with-
out any encoding to ensure a high baseline accuracy and
the ability to generate high quality CAMs. Next, we select
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Figure 3. Visualization of CAMs from various encoders on
128 × 128 images in CelebA dataset. Rows from top to bottom
are the mean of the encoded images, CAMs-T1 (smiling), and
CAMs-T2 (gender), respectively. The proposed objective func-
tion clearly pushes the CAMs to the respective (top-left for T1,
and bottom-right for T2) corners.

an encoder and train the entire pipeline using the learning
regimes detailed in Sec. 3.3. We then freeze the encoder and
mask the encoded regions using corner masks as descried in
Sec 3.3.3. Finally, we train classifiers on the encoded im-
ages and report the accuracy on T1 and T2. Our encoders
are trained using the AdamW [23] optimizer, and the classi-
fiers are trained using Stochastic Gradient Descent [32] with
a learning rate of 1e−3 and momentum of 0.9. We use a Co-
sine Annealing [22] (without restarts) scheduler to decrease
the learning rate over 100 epochs.

4.3. Results

We first assess the effect of our method in feature sepa-
ration, then compare it against other encoding schemes. We
then examine the robustness of our encoder to image recon-
struction attacks. Finally, we conduct a series of ablation
studies to analyze the impact of various characteristics and
training methods. Additional results including more than
two tasks, a face identification case study, and more abla-
tion results can be found in our Supplementary material.

4.3.1 Verification of Feature Separation

We evaluate the setup in Sec. 3 by training T1 and T2 with
an encoder that has learned to perform spatial separation
and masking with increasing masking ratios. Fig. 3 shows
that we can indeed train encoders to effectively separate
the CAM regions for individual tasks with minimal perfor-
mance degradation (without masks). Fig. 3(left-column)
displays the default CAM regions for the two tasks on
trained classifiers: CAMs-T1 (smile) are centered around
the mouth, while CAMs-T2 (gender) are more spread out.
Our encoded models successfully push the CAMs to the

Table 2. Utility ↑ and Privacy ↓ task performance using the top-
left (maskTL) and bottom-right (maskBR) masking strategies.

Model Optimizer MaskTL MaskBR
T1↑ T2↓ T1↓ T2↑

MLP-Mixer AdamW 90.85 64.83 60.48 96.20
MLP-Mixer SGD 90.80 56.13 58.23 96.15
ResNet-18 AdamW 90.95 66.93 60.28 96.20
ResNet-18 SGD 90.70 67.13 60.73 96.20

ViT AdamW 90.60 56.13 58.23 96.10
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Figure 4. Comparison with other methods. (left) utility task is
smiling and private task is gender; (right) tasks are flipped.

top-left and bottom-right regions, respectively. The top row
visualizes the average encoded images for reference. We
also evaluate different models in Table 2. Once an encoder
is trained, we freeze it and train models for T1 and T2,
with utility and privacy tasks described by ↑ and ↓ respec-
tively. The best trade-off is achieved with the original mod-
els (ResNet-18) used for training the encoder. So, we report
our attack performance on ResNet-18 going forward.

4.3.2 Comparison with other methods

Privacy-Utility Trade-off. In Fig. 4, we compare our
method against other encoding-based models, such as ANI
and Cloak [26], on the smiling (utility) vs. gender (pri-
vate) task as presented in ANI. Ideal represents perfor-
mance when the utility accuracy is that of a pretrained clas-
sifier without an encoder, and the private accuracy is equal
to percentage of the largest class (i.e., random guessing)
which is 52% for smiling task, and 58.1% for gender. Our
method employs a DONN-5-res encoder, which is a 5-layer
DONN with a residual connection, trained to separate T1
and T2 features. ANI controls their trade-off by adjusting
the standard deviation of Gaussian noise added to the en-
coded images. We control it by changing the masking ratios
of the top-left corner (maskTL) as shown in Fig. 2. For the
set of task where the utility is smiling and privacy is gen-
der (left), ANI achieves a good trade-off, maintaining util-
ity accuracy close to the ideal (baseline) accuracy while the
private accuracy decreases with increased noise magnitude.



Table 3. Comparison with optical baseline. T1, T2, T3, T4 are
smiling, gender, lipstick, mouth open respectively. Bold and un-
derlined text denotes best and second best accuracy in that column
respectively. ↑ and ↓ are utility and private tasks respectively.

Scenario 1 Scenario 2 Scenario 3
Method T1↑ T2↓ T1↑ T3↓ T4↑ T2↓

PPIA-GAP 85.2 75.2 85.6 70.1 78.0 72.2
PPIA-IS 86.0 78.9 86.8 80.5 78.5 72.6

PrivateEye 85.4 62.7 82.4 58.2 79.1 62.6

In contrast, Cloak exhibits a poor trade-off, with a slope of
close to 1, which indicates that irrespective of the parameter
used to control the trade-off, it sacrifices too much utility
accuracy to achieve low private accuracy. The UNet-tiny
encoder performs better than DONN, in some cases beating
the ideal utility accuracy. This is due to UNet’s sophisti-
cated architecture (as described in Sec 3.4) increasing the
capability of the classifier.

The key part of our method is the feature separation fol-
lowed by masking. Without this feature separation step, i.e.,
if we simply mask regions guided by the CAM heatmaps
– the potential overlap between the utility and private task
features could cause utility information to be lost when
masked. We validate this by comparing our method against
a purely CAM-based masking strategy (without a DONN
feature separator). Fig. 4 shows that the CAM-based mask-
ing method has a poor trade-off compared to our method.

Finally, we showcase the flexibility of our method, where
we can use the same DONN encoder and merely flip the
mask to the bottom right (maskBR) and attain high perfor-
mance on gender and low private accuracy on smiling as
seen in Fig. 4 (right). ANI and Cloak are unable to do this
without having to train a new encoder for this pair of task.

Furthermore, Table 3 demonstrates our encoders on var-
ious tasks against an optical encoder based PPIA [34]
method. PPIA uses two different approaches to learn a sin-
gle optical layer: GAP (generative adversarial privacy) and
IS (Inverse Siamese). We observe that in most of these
tasks, our approach significantly decreases the attainable
private accuracy (denoted by ↓). In contrast to our other re-
ported results, Table 3 uses a grayscale 64 × 64 size CelebA
input to the optical encoder, and uses a MobileNetv2 classi-
fier for all tasks to match the setting of PPIA.

4.3.3 Reconstruction-Based Attacks

Until now, we have used private accuracy to gauge how well
our method mitigates an attacker’s ability to discern sensi-
tive attributes. Now, we consider a different mode of attack:
reconstruction-based attacks, wherein an attacker trains a
network (e.g., UNet) to reconstruct the original images from
the encoded images. To quantitatively measure the differ-
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Figure 5. Reconstruction based attacks, along with average SSIM
scores at various masking ratios.

ence between the reconstructed and original images, we use
the average Structural Similarity Index Measure (SSIM).

To train the reconstruction network, we freeze the
learned encoder, change various masking ratios, and train
a full UNet model with a mean square error loss between
the input and reconstructed images. Fig. 5 visualizes the
reconstruction capability of an adversary based on different
masking ratios. We observe that while the reconstruction re-
covers low frequency information such as color and overall
structure, the attacker is unable to reconstruct key features,
and even swaps genders in some reconstructions (e.g., the
second row). The SSIM scores for each masking ratio also
demonstrate that an attacker finds it extremely difficult to
reconstruct the original images, with the difficulty increas-
ing with the aggressiveness of the masking ratios.

4.3.4 Ablation Study

Encoder Architecture and Depth. A DONN can be con-
figured in various ways. Here, we explore the relationship
between the number of diffractive layers – which charac-
terizes physical realizability of the setup, and the utility-
privacy trade-off. Fig. 6 visualizes the performance of var-
ious architectures: the left shows the privacy-utility curves
for various architectures and the right shows the aggregated
performance using the metrics proposed in Sec. 4.1. “-res”
refers to an architecture with a residual connection, and the
number refers to the number of layers in the DONN. Deeper
layers tend to have better (lower errors) trade-off, and the
performance trend is similar to that seen in LightRidge. Our
findings reveal that in Fig. 6 (right), donn-3 has the worst
trade-off and use its ∆ scores to normalize the rest of the
results. Meanwhile, donn-10-res has the best utility-privacy
trade-off for this task by having the lowest ∆trade−off .
Without the residual connection, donn-10 performs worse
than donn-5 (higher ∆priv), probably because deeper lay-
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Figure 6. Comparative trade-off analysis contrasting DONNs with
3,5 and 10 layers, (and a residual version for donn-10).

Table 4. Learned masking on the T1: smiling, T2: gender task

T1 ↑ T2 ↓ T2 ↓ T1 ↑
Masking Strategy Acc T1 Acc T2 Acc T1 Acc T2

Corner 91.6 64.5 62.2 97.4
Learned 91.5 59.6 59.0 97.3

ers have more challenges converging to an optimum.

Residual connections on donn-10-res addresses this is-
sue by allowing intermittent shortcuts from the input, which
improves training. It is important to realize that while
deeper layers perform better, they come with a physical re-
alizability cost with having to fabricate more phase masks
and use more lenses. Incorporating residual connections
requires even more optical components like reflection mir-
rors [17]. Thus the cost of realizing the DONN architecture
needs to be considered along with the desired trade-off.

Learned Masking. We initially mask the entire encoded
image except for the corners to preserve T1 or T2 accuracy,
but these static masks may be sub-optimal. To address this,
we explore learned masks, hypothesizing that even within
unmasked regions, pixels may leak sensitive information.
We systematically learn the masks by freezing the encoder
and adversarially training the mask to maximize utility and
minimize privacy via the classifiers’ cross-entropy losses.

We find that adversarially learning a full mask does
not converge well. However, adding a corner mask prior,
where the learned mask optimizes within a predefined re-
gion, leads to improved privacy protection. We learn the
binary mask while enforcing an upper bound on the mask-
ing ratio. As shown in Table 4, with a masking ratio of 95%,
the learned mask achieves a better trade-off than static cor-
ner masks. Although utility accuracy slightly decreases by
∼0.1%, private task accuracy is further reduced by ∼4% for
the top-left corners and ∼3.2% for the bottom-right regions.

5. Discussion
5.1. Advantages of DONNs

Lower Latency and Energy Consumption. Due to the
optical nature of DONNs, they exhibit minimal to no la-
tency overhead compared to digital circuits. In contrast, in-
corporating a dedicated edge processor chip near the image
sensor to handle conventional DNN encoding in the digital
domain introduces significant overhead. Even an aggres-
sive edge processor (systolic array with 32× 32 MAC units
and 7 nm technology at 1 GHz) [8] consumes 5 nJ/pixel
and 13.6 ms response time, as compared to 0.2 pJ/pixel
and 16.7ms allocated to image sensor itself ; less advanced
edge processors would perform even worse. On the other
hand, DONNs not only consume nearly zero energy and ex-
hibit negligible latency, they also enable aggressive mask-
ing to reduce data volume, which further conserves energy
and decreases latency on the image sensor hardware.

5.2. Limitations of DONNs

Linearity of DONN. Although the Fresnel approxima-
tion for light propagation appears non-linear due to Fourier
transforms and trigonometric functions, the overall process
remains linear with respect to the input light waves [2,
17, 46]. This means that our current DONN setup, which
lacks non-linear activations, performs only linear transfor-
mations. We argue that: 1) For our current tasks, this linear
setup provides a good privacy-utility trade-off; and 2) For
more complex tasks, incorporating non-linear optical oper-
ations [44] could enhance performance. The images in the
CelebA dataset are mostly well-aligned, with faces centered
and exhibiting only minor variations. Our results demon-
strate that the DONN can tolerate these slight variations and
achieve a good utility-privacy trade-off. However, increased
task complexity where images are not well-aligned poses a
challenge for DONNs. We observe that while a UNet-tiny
encoder can be trained using the PrivateEye framework pro-
vides a good privacy-utility balance and remains resilient to
shifts of up to 8 pixels in the horizontal and/or vertical direc-
tions (for a 32×32 input), DONNs tend to leak more private
information under similar conditions. We believe this issue
remains to be fully addressed and leave it to future work.

Additional advantages and limitations of our method are
discussed in the Supplementary material.

6. Conclusion
We propose PrivateEye, which employs a DONN to

perform feature separation and a masking scheme to pass
through only utility features to enhance privacy. By utiliz-
ing the optical nature of the DONN, the proposed method
introduces nearly zero latency and energy overhead, while
exhibiting superior privacy inhibition performance in vari-
ous classification tasks.
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gan: Conditional identity anonymization generative adver-
sarial networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5447–
5456, 2020. 2

[26] Fatemehsadat Mireshghallah and et.al. Not all features are
equal: Discovering essential features for preserving predic-
tion privacy. In Proceedings of the Web Conference 2021,
2021. 2, 6

[27] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), pages 807–814, 2010. 4



[28] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh,
Ali Taheri, Kleomenis Katevas, Hamid R Rabiee, Nicholas D
Lane, and Hamed Haddadi. A hybrid deep learning architec-
ture for privacy-preserving mobile analytics. IEEE Internet
of Things Journal, 7(5):4505–4518, 2020. 2

[29] Francesco Pittaluga, Sanjeev Koppal, and Ayan Chakrabarti.
Learning privacy preserving encodings through adversarial
training. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 791–799. IEEE, 2019. 2

[30] Geyang Qu, Guiyi Cai, Xinbo Sha, Qinmiao Chen, Ji-
aping Cheng, Yao Zhang, Jiecai Han, Qinghai Song,
and Shumin Xiao. All-dielectric metasurface empowered
optical-electronic hybrid neural networks. Laser & Photon-
ics Reviews, 16(10):2100732, 2022. 3

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 5

[32] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 6

[33] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 4

[34] Yamin Sepehri, Pedram Pad, Clément Kündig, Pascal
Frossard, and L Andrea Dunbar. Privacy-preserving image
acquisition for neural vision systems. IEEE Transactions on
Multimedia, 25:6232–6244, 2022. 3, 7

[35] Animesh Srivastava, Puneet Jain, Soteris Demetriou, Lan-
don P Cox, and Kyu-Han Kim. Camforensics: Understand-
ing visual privacy leaks in the wild. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Sys-
tems, pages 1–13, 2017. 1

[36] Xiubao Sui, Qiuhao Wu, Jia Liu, Qian Chen, and Guohua
Gu. A review of optical neural networks. IEEE Access,
8:70773–70783, 2020. 1, 2

[37] Qianru Sun, Liqian Ma, Seong Joon Oh, Luc Van Gool,
Bernt Schiele, and Mario Fritz. Natural and effective obfus-
cation by head inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5050–5059, 2018. 2

[38] Zaid Tasneem, Giovanni Milione, Yi-Hsuan Tsai, Xiang
Yu, Ashok Veeraraghavan, Manmohan Chandraker, and
Francesco Pittaluga. Learning phase mask for privacy-
preserving passive depth estimation. In European Confer-
ence on Computer Vision, pages 504–521. Springer, 2022.
3

[39] Ali Tekeoglu and Ali Saman Tosun. Investigating security
and privacy of a cloud-based wireless ip camera: Netcam.
In 2015 24th International Conference on Computer Com-
munication and Networks (ICCCN), pages 1–6. IEEE, 2015.
1

[40] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in neural information processing systems, 34:24261–24272,
2021. 5

[41] Gleb Vdovin, Hedser van Brug, and Fred van Goor. Light-
pipes: software for education in coherent optics. In Fifth
International Topical Meeting on Education and Training in
Optics, Delft, The Netherlands, pages 19–21, 1997. 3

[42] Madhu Veettikazhy, Anders Kragh Hansen, Dominik Marti,
Stefan Mark Jensen, Anja Lykke Borre, Esben Ravn An-
dresen, Kishan Dholakia, and Peter Eskil Andersen. Bpm-
matlab: an open-source optical propagation simulation tool
in matlab. Optics Express, 29(8):11819–11832, 2021. 3

[43] Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai
Cao, and Philip S Yu. Not just privacy: Improving perfor-
mance of private deep learning in mobile cloud. In Pro-
ceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 2407–2416,
2018. 2

[44] Tianyu Wang and et al. Image sensing with multilayer non-
linear optical neural networks. Nature Photonics, 17(5),
2023. 8

[45] Tianyu Wang, Shi-Yuan Ma, Logan G Wright, Tatsuhiro On-
odera, Brian C Richard, and Peter L McMahon. An optical
neural network using less than 1 photon per multiplication.
Nature Communications, 13(1):123, 2022. 1, 2

[46] John T Winthrop and CR Worthington. Convolution formu-
lation of fresnel diffraction. JOSA, 56(5):588–591, 1966. 8

[47] Zhenyu Wu, Zhangyang Wang, Zhaowen Wang, and Hailin
Jin. Towards privacy-preserving visual recognition via ad-
versarial training: A pilot study. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 606–
624, 2018. 2

[48] Taihong Xiao, Yi-Hsuan Tsai, Kihyuk Sohn, Manmohan
Chandraker, and Ming-Hsuan Yang. Adversarial learning of
privacy-preserving and task-oriented representations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12434–12441, 2020. 2

[49] Kaiyu Yang, Jacqueline H Yau, Li Fei-Fei, Jia Deng, and
Olga Russakovsky. A study of face obfuscation in ima-
genet. In International Conference on Machine Learning,
pages 25313–25330. PMLR, 2022. 2

[50] Hui Zhang, Mile Gu, XD Jiang, Jayne Thompson, Hong
Cai, Stefano Paesani, Raffaele Santagati, Anthony Laing, Y
Zhang, Man-Hong Yung, et al. An optical neural chip for
implementing complex-valued neural network. Nature com-
munications, 12(1):457, 2021. 2

[51] Hanyu Zheng, Quan Liu, Ivan I Kravchenko, Xiaomeng
Zhang, Yuankai Huo, and Jason G Valentine. Multichan-
nel meta-imagers for accelerating machine vision. Nature
Nanotechnology, pages 1–8, 2024. 3

[52] Hanyu Zheng, Quan Liu, You Zhou, Ivan I Kravchenko,
Yuankai Huo, and Jason Valentine. Meta-optic accelerators
for object classifiers. Science Advances, 8(30):eabo6410,
2022. 3

[53] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on



computer vision and pattern recognition, pages 2921–2929,
2016. 4


	. Introduction
	. Background and Related Works
	. Imaging Pipeline for Vision Applications
	. Privacy Preservation
	. Optical Computation

	. Methodology
	. Use Scenario and Threat Model
	. Problem Setup
	. Training the Encoder
	Class Activation Maps and Anchoring
	Learning Regime
	Masking

	. Challenges with DONN

	. Experimental Evaluation
	. Datasets, Metrics, and Models
	. Training details
	. Results
	Verification of Feature Separation
	Comparison with other methods
	Reconstruction-Based Attacks
	Ablation Study


	. Discussion
	. Advantages of DONNs
	. Limitations of DONNs

	. Conclusion

